
Achieving High Quality Knowledge Acquisition
using Controlled Natural Language

Tiantian Gao?

Department of Computer Science,
Stony Brook University, Stony Brook, NY, USA

tiagao@cs.stonybrook.edu

Abstract. Controlled Natural Languages (CNLs) are efficient languages
for knowledge acquisition and reasoning. They are designed as a subset of
natural languages with restricted grammar while being highly expressive.
CNLs are designed to be automatically translated into logical represen-
tations, which can be fed into rule engines for query and reasoning. In
this work, we build a knowledge acquisition machine, called KAM, that
extends Attempto Controlled English (ACE) and achieves three goals.
First, KAM can identify CNL sentences that correspond to the same
logical representation but expressed in various syntactical forms. Sec-
ond, KAM provides a graphical user interface (GUI) that allows users
to disambiguate the knowledge acquired from text and incorporates user
feedback to improve knowledge acquisition quality. Third, KAM uses a
paraconsistent logical framework to encode CNL sentences in order to
achieve reasoning in the presence of inconsistent knowledge.

Keywords: Knowledge Acquisition, Controlled Natural Language, Logic
Programming

1 Introduction

Much of human knowledge can be represented as rules and facts, which can be
used by rule engines (e.g., Prolog [23], Clingo [10], IDP [6]) to conduct formal
logical reasoning in order to derive new conclusions, answer questions, or explain
the validity of true statements. However, rules and facts extracted from human
knowledge can be very complex in the real world. This will demand domain ex-
perts to spend a lot of time on understanding the rule systems in order to write
logical rules. CNLs emerge as better knowledge acquisition systems over rule
systems in that they can acquire knowledge from text and represent the text
in logical forms for reasoning. CNLs are designed based on natural languages,
but with restricted grammar to avoid ambiguities while being highly expressive.
Representative languages include ACE [8], Processable English (PENG) [25],
BioQuery-CNL [7]. In general, CNL systems provide a GUI for user to enter
CNL text. The language parser checks the grammar of the text and sends back

? The author is advised by Michael Kifer and Paul Fodor from Stony Brook University.

2 Tiantian Gao

suggestions for correction to the user. CNL text is then mapped into the corre-
sponding logic programs based on the syntax and semantics of the underlying
rule engine in order to perform question answering tasks.

Though the aforementioned systems have good intent of design, we found
that there are several limitation in current CNL systems. First, they have lim-
ited ability to identify sentences that express the same meaning but in various
syntactical forms. For instance, ACE translates sentences Mary owns a car and
Mary is the owner of a car into two different logical representations. As a
result, if the first sentence is entered into the knowledge base, the reasoner will
fail to answer the question who is the owner of a car. However, in the real
world, it is very common that the user writes questions in a different way from
the author who composes the knowledge base. Second, current CNL systems do
not accept inconsistent knowledge to occur. In other words, once inconsistent
information is found, the underlying rule engine will break and not be able to
conduct any inference tasks. In our view, inconsistency is very likely to hap-
pen when the knowledge base is formed by merging multiple resources together.
Hence, it is useful to design a paraconsistent logical framework that can reason
in the presence of inconsistent knowledge. Third, there is no way for the user
to edit or audit the acquired knowledge. CNL systems are not guaranteed to
always return the user-expected results. As a result, it is necessary to provide a
mechanism for the user to edit the acquired knowledge as opposed to re-write
sentences many times in order to meet the requirement.

In this work, we design a knowledge acquisition system, KAM, that achieves
three goals. First, KAM performs deep semantic analysis of English sentences
and maps sentences that express the same meaning via different syntactic forms
to the same standard logical representations. Second, KAM performs valid logi-
cal inferences based on the facts and rules extracted from English sentences and
achieves inconsistency-tolerance for query answering. Third, KAM builds an en-
vironment to assist users with entering and disambiguating English texts. In the
following parts, Section 2 shows the background knowledge of the natural lan-
guage processing tools KAM uses in the knowledge acquisition process, Section
3 describes the architecture of the system, Section 4 shows the current state of
research and discusses some open issues, and Section 5 concludes the paper.

2 Background

In this section, we provide the background of linguistic databases, semantic re-
lation extraction, and word similarity measures in the field of natural language
processing in order to help readers better understand KAM.

2.1 Linguistic Databases

KAM uses a lexical database, BabelNet, and a frame-relation database, FrameNet,
in the process of knowledge acquisition. A lexical database is a database of words.
It contains information of part-of-speech, word sense, synset and word relation.

Achieving High Quality Knowledge Acquisition using CNL 3

WordNet [20] is one of the famous ones, where each word is defined with a list of
word senses. Words that share similar meanings are grouped as a synset. Synsets
are connected by semantic relations. For instance, the hypernym relation says
that one synset is a more general concept of the other, i.e., human is the hyper-
nym of homo sapiens. WordNet is rich in word knowledge, but it lacks sufficient
information of named entities. DBPedia [1], WikiData [28], and YAGO [26] are
databases of entities, where each is defined with a set of properties and the rela-
tions with other entities or with some pre-defined ontological classes. However,
there is no link between an entity in an entity database like DBPedia and a
concept in WordNet. As a result, there is no way to find their semantic relations
which is useful in many cases. BabelNet solves this problem by integrating mul-
tiple knowledge bases, including WordNet, DBPedia, Wikidata, etc. Besides, it
automatically finds the mapping across different knowledge bases and therefore
bridges the gap between concepts and entities.

FrameNet is a database representing entity relations using frames. A frame
consists of a set of frame elements and lexical units. A frame element denotes
an entity that serves a particular semantic role in a frame relation. Frame ele-
ments are frame-specific. Therefore, they are not shared among frames. A lexical
unit indicates a target word in a sentence that triggers a frame relation. For ex-
ample, the sentence Mary works for IBM as an engineer semantically entails
the Being Employed frame relation, where work is the lexical unit and Mary,
IBM, and engineer represent the Employee, Employer, and Position frame el-
ements respectively. In FrameNet, each lexical unit is associated with a set of
valence patterns and exemplar sentences. Valence patterns show the grammati-
cal functions [14] of each frame element with respect to the lexical unit. For the
above sentence, Mary is the external of work, and IBM and engineer are the
dependent of the prepositional modifiers of work. Exemplar sentences are the
sample English sentences that realize the valence patterns.

In addition to FrameNet, VerbNet [24] and PropBank [15] are also databases
of entity relations. VerbNet and PropBank are purely verb-oriented. Therefore,
they cannot recognize noun-, adjective-, or adverb-triggered relations. Besides,
since VerbNet and PropBank group verbs based on the syntactic patterns of
verbs with respect to the entities, verbs that belong to the same class may not
represent the same meaning. The advantage of VerbNet over FrameNet is that
VerbNet assigns a WordNet synset ID to each verb. Additionally, it defines an
ontology that defines the semantic restrictions for entities that can serve partic-
ular semantic roles in an entity relation. In KAM, we use FrameNet augmented
with BabelNet synset IDs for each frame element and lexical unit.

2.2 Semantic Relation Extraction

Semantic relation extraction tools analyze the semantics of English sentences and
extract their entailed relations. Representative tools include Ollie [19], Stanford
Relation Extractor [27], LCC [17], SEMAFOR [5], and LTH [13]. Ollie is a rela-
tion extractor that extracts triples representing binary relations based on open
domains. Stanford Relation Extractor and LCC, on the other hand, can only

4 Tiantian Gao

extract from a fixed set of relations. Although Ollie is flexible at extracting re-
lations, it cannot standardize triples that represent the same semantic relation.
Stanford Relation Extractor and LCC are better at relation standardization, but
can work with a limited number of relations.

Compared with the aforementioned tools, SEMAFOR and LTH are FrameNet-
based semantic parsers that aim to identify a large number of relations and
achieve standardization. Basically, they use machine learning algorithms to train
the model based on the exemplar sentences in FrameNet. Based our empirical
study, SEMAFOR and LTH do not perform well enough for knowledge acquisi-
tion. Recall the sentence Mary works for IBM as an engineer from the previ-
ous section. SEMAFOR extracts two frames: one is usefulness frame triggered
by work, where Mary and for IBM represent the entity and purpose frame
elements respectively; the other one is People by vocation frame triggered by
engineer, with no frame elements attached. The first one is wrong because for

in this context does not express the purpose meaning. Although the second frame
is correct, it does not find who holds this vocation.

In our analysis of FrameNet 1.6 data, 65592 out of 93413 valence patterns
have only one exemplar sentence and 11984 valence patterns have two exem-
plar sentences. This accounts for 83% of the total valence patterns. However,
there are also valence patterns with more than 100 exemplar sentences. An un-
even distribution of the exemplar sentences per valence pattern will result in
an imprecise estimation of model parameters. In addition, frame elements do
not have semantic restrictions, which are useful in practical cases. For instance,
comparing sentences Mary has a full-time job and Mary has a well-paid

job, both full-time and well-paid are adjective modifiers of job. But, they are
classified as two different frame elements: Contract-basis and Compensation

respectively. Without any semantic constraints, we cannot distinguish these two
frame elements based on their syntactical context.

2.3 Semantic Similarity

Semantic similarity measures the semantic closeness of a pair of synsets. Tradi-
tional methods include lesk [2], wup [29], lch [16], jcn [12], lin [18], res [22], hso
[11]. For instance, lesk measures the semantic similarity of two synsets based on
the overlapping information between their glosses. Others are based on the graph
relation between two synsets in WordNet. Recent work includes the NASARI
approach [3], where each word is represented as a vector. Semantic similarity
is computed based on the Weighted Overlap measure [21]. In KAM, we use
NASARI approach. First, NASARI dataset is based on BabelNet, which is more
up-to-date than WordNet. Second, NASARI approach shows better performance
than the aforementioned traditional approaches based on [3].

3 KAM Framework

KAM consists of two parts: supervised knowledge annotation and knowledge ac-
quisition. Supervised knowledge annotation is designed to create a Prolog knowl-

Achieving High Quality Knowledge Acquisition using CNL 5

edge base that represents an augmented version of FrameNet data. Basically, the
knowledge base includes the logical representations of frames, frame elements,
lexical units, and valence patterns. Besides, each frame element is assigned with
a list of BabelNet synsets that capture its definition. Users can also add new
frames to the knowledge base. The Prolog knowledge base is used in knowledge
acquisition, where we provide a tool that achieves the following:

1. run deep semantic analysis of controlled English text in order to ensure that
different sentences that express the same meaning are mapped to the same
logical representations.

2. perform valid logical inferences based on the facts and rules extracted from
English sentences and achieve inconsistency-tolerance in the process of knowl-
edge acquisition.

3. allow the user to enter controlled English text, disambiguate acquired knowl-
edge, and perform question answering tasks

First, we give an brief overview of KAM’s language parser, Attempto Parsing
Engine (APE), which is based on ACE grammar1. APE translates CNL sentences
into a Discourse Representation Structure (DRS)2, which captures the semantic
meaning of the sentences. A DRS uses six pre-defined predicates to represent
the semantics of a word in a sentence, including object, property, relation,
modifier adv, modifier pp, has part, query, and predicate predicates. For
instance, the sentence A man enters a door with a card is represented as

object(A,man,countable,na,eq,1)

object(B,door,countable,na,eq,1)

object(C,card,countable,na,eq,1)

predicate(D,enter,A,B)

modifier_pp(D,with,C)

where the object-predicate denotes the head word of a noun phrase, the
predicate-predicate represents an action, and the modifier pp signifies a prepo-
sitional modifier to the action.

We define the semantic relation between two predicates as a dependency
path that connects these two predicates via a list of variables and intermediate
predicates. For the above example, man is the subject of the enter action. The
semantic relation is represented as

predicate(D,enter,A,B) -> A -> object(A,man,countable,na,eq,1)

There can be more than one dependency paths that connect two predicates. For
the rest of this section, we will only consider the shortest dependency path.

1 http://attempto.ifi.uzh.ch/site/docs/syntax_report.html
2 http://attempto.ifi.uzh.ch/site/pubs/papers/drs_report_66.pdf

6 Tiantian Gao

3.1 Supervised Knowledge Annotation

Figure 1 shows the architecture of supervised knowledge annotation. The GUI
provides an environment for the user to annotate FrameNet frames and query
BabelNet. Given a frame, the user is required to disambiguate each frame ele-
ment name by assigning a BabelNet synset to it. For instance, in Being Employed

frame, Position is assigned with the synset bn:00010073n (a job in an organi-
zation) and Employee is assigned with the synset bn:00030618n (a person who
is hired to perform a job). The annotated frame and frame elements are mapped
into Prolog representation by LFrame Generator as

frame_def(Frame_Name,[

frame_element(Frame_Element_Name, BabelNet_SID)|...])

Fig. 1. Supervised Knowledge Annotation

Next, the user annotates each lexical unit and its exemplar sentences. Given that
FrameNet exemplar sentences are written in normal English, some may not be
parsed by APE. Therefore, the user needs to manually rephrase each exemplar
sentence according to ACE grammar. Besides, the user marks the lexical unit
and frame elements of a sentence. The annotated lexical units and exemplar
sentences are mapped into Prolog representation by LFE Extractor as

lvp(Lexical_Unit, Frame_Name, [

lgf(Frame_Element_1,Dependency_Path_1)|...])

where it extracts dependency paths that represent the semantic relations between
a lexical unit and the frame elements.

LFrame Engine uses the frame def and lvp predicates to extract frame re-
lations and identify frame elements from new sentences. Specifically, LFrame
Engine applies the lvps to each word of a sentence to extract potential frames
and frame elements, denoted as

frame(Frame_Name,[

frame_element(Frame_Element_Name, Val)|...])

Achieving High Quality Knowledge Acquisition using CNL 7

3.2 Knowledge Acquisition

Figure 2 shows the process of translating a CNL sentence into its logical form.
First, APE parses the input sentence and generates the DRS and part-of-speech
of each word. Second, KAM queries BabelNet and gets the synsets each word
belongs to. In parallel, LFrame Engine extracts the candidate frames and frame
elements from the DRS. Next, for each candidate frame relation, KAM disam-

Fig. 2. Knowledge Acquisition

biguates the word sense of each frame element based on the frame element name.
Recall from the previous subsection, each frame element name is assigned with
a BabelNet synset ID that captures its definition. Here, KAM uses NASARI
database to measure the semantic similarity between each synset the frame el-
ement belongs to and the frame element name. KAM chooses the synset with
the highest semantic similarity score as the word sense of the frame element.
The sum of the semantic scores of each frame element is defined as the score of
the extracted frame relation. Finally, KAM ranks the candidate frames based on
their scores. For example, given the sentence There is a person who works

in London, LFrame Engine finds three candidate frame relations:

frame(Being_Employed,[frame_element(Employee, person),

frame_element(Employer, London)])

frame(Being_Employed,[frame_element(Employee, person),

frame_element(Position, London)])

frame(Being_Employed,[frame_element(Employee, person),

frame_element(Place, London)])

KAM computes the semantic similarity scores between person and Employee

(resp. London and Employer, London and Position, and London and Place) in
order to disambiguate the word sense of person and London in each frame. In
this case, the third frame has the highest score where person is assigned with
BabelNet synset bn:00046516n (a human being) and London is assigned with
bn:00013179n (the capital and largest city of England). KAM shows the ranked
results to the user and asks the user to choose the one which is consistent with
his/her understanding. Given that NASARI uses a statical approach to measure

8 Tiantian Gao

the semantic similarities, there could be errors in the computation. KAM allows
the user to audit the result. The feedback will be recorded in order to improve
the quality of semantic similarity measures in the next run.

KAM represents the semantics of the frame relations in a paraconsistent
logical framework, Annotated Predicate Calculus (APC) [9]. The advantage APC
provides over Answer Set Programming (ASP) systems and first-order logic is
that APC allows inference in the presence of inconsistent knowledge. Besides, it
captures a lot of complex features in natural language, e.g., negation, numerical
constraints, reasoning by cases. Further details of APC and its applications in
natural language understanding can be found in [9]. For the previous sentence
There is a person who works in London, its encoding is

frame(being_employed, #1) : t.

frame_element(#1, employee, #2) : t.

frame_element(#1, place, #3) : t.

object(#2, person, bn:00046516n) : t.

object(#3, london, bn:00013179n) : t.

where t is a truth annotation in APC, #1, #2, and #3 are skolemized constants,
bn:00046516n and bn:00013179n refer to BabelNet synsets.

4 Current State of Research and Open Issues

Currently, we are working on building the prototype of the system that achieves
knowledge annotation and knowledge acquisition. In the first stage, we focus
on extracting logical facts from CNL sentences. We have encoded a subset of
the frames in FrameNet that suffices to capture the frame relations in a certain
domain. We also run experiments to show the power of KAM in standardizing
CNL sentences to logical representations in comparison with other relation ex-
traction tools. As the next step, we will work on extracting rules from CNL text
and apply the rules and facts in question answering. Besides, we will expand the
LFrame Engine to include additional frames and apply to broader domains.

5 Conclusion

In this paper, we show a novel knowledge acquisition system, KAM. First, it is
a new approach in information extraction that can identify English sentences
expressing the same meaning in different syntactic forms and standardize them
to the same semantic representation. Second, it applies APC, a paraconsistent
logical framework to encode English sentences in a logical manner to support
inference in the presence of inconsistent knowledge. Third, KAM provides the
users an environment to enter and disambiguate the English text and perform
question answering tasks.

Achieving High Quality Knowledge Acquisition using CNL 9

References

1. Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary G. Ives. Dbpedia: A nucleus for a web of open data. In Karl Aberer,
Key-Sun Choi, Natasha Fridman Noy, Dean Allemang, Kyung-Il Lee, Lyndon J. B.
Nixon, Jennifer Golbeck, Peter Mika, Diana Maynard, Riichiro Mizoguchi, Guus
Schreiber, and Philippe Cudré-Mauroux, editors, The Semantic Web, 6th Inter-
national Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC
2007 + ASWC 2007, Busan, Korea, November 11-15, 2007., volume 4825 of Lec-
ture Notes in Computer Science, pages 722–735. Springer, 2007.

2. Satanjeev Banerjee and Ted Pedersen. An adapted lesk algorithm for word sense
disambiguation using wordnet. In Alexander F. Gelbukh, editor, Computational
Linguistics and Intelligent Text Processing, Third International Conference, CI-
CLing 2002, Mexico City, Mexico, February 17-23, 2002, Proceedings, volume 2276
of Lecture Notes in Computer Science, pages 136–145. Springer, 2002.

3. José Camacho-Collados, Mohammad Taher Pilehvar, and Roberto Navigli. Nasari:
Integrating explicit knowledge and corpus statistics for a multilingual representa-
tion of concepts and entities. Artif. Intell., 240:36–64, 2016.

4. Danqi Chen and Christopher D. Manning. A fast and accurate dependency parser
using neural networks. In Alessandro Moschitti, Bo Pang, and Walter Daelemans,
editors, Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of
SIGDAT, a Special Interest Group of the ACL, pages 740–750. ACL, 2014.

5. Dipanjan Das, Desai Chen, André F. T. Martins, Nathan Schneider, and Noah A.
Smith. Frame-semantic parsing. Computational Linguistics, 40(1):9–56, 2014.

6. Broes de Cat, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker. Predicate
logic as a modelling language: The IDP system. CoRR, abs/1401.6312, 2014. URL:
http://arxiv.org/abs/1401.6312.

7. Esra Erdem, Halit Erdogan, and Umut Öztok. BIOQUERY-ASP: querying biomed-
ical ontologies using answer set programming. In Stefano Bragaglia, Carlos Viegas
Damásio, Marco Montali, Alun D. Preece, Charles J. Petrie, Mark Proctor, and
Umberto Straccia, editors, Proceedings of the 5th International RuleML2011@BRF
Challenge, co-located with the 5th International Rule Symposium, Fort Lauderdale,
Florida, USA, November 3-5, 2011, volume 799 of CEUR Workshop Proceedings.
CEUR-WS.org, 2011.

8. Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn. Attempto controlled en-
glish for knowledge representation. In Cristina Baroglio, Piero A. Bonatti, Jan
Maluszynski, Massimo Marchiori, Axel Polleres, and Sebastian Schaffert, editors,
Reasoning Web, 4th International Summer School 2008, Venice, Italy, September
7-11, 2008, Tutorial Lectures, volume 5224 of Lecture Notes in Computer Science,
pages 104–124. Springer, 2008.

9. Tiantian Gao, Paul Fodor, and Michael Kifer. Paraconsistency and word puzzles.
TPLP, 16(5-6):703–720, 2016.

10. Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski, Torsten
Schaub, and Marius Thomas Schneider. Potassco: The potsdam answer set solving
collection. AI Commun., 24(2):107–124, 2011.

11. Graeme Hirst, David St-Onge, et al. Lexical chains as representations of context
for the detection and correction of malapropisms. WordNet: An electronic lexical
database, 305:305–332, 1998.

10 Tiantian Gao

12. Jay J. Jiang and David W. Conrath. Semantic similarity based on corpus statistics
and lexical taxonomy. CoRR, cmp-lg/9709008, 1997.

13. Richard Johansson and Pierre Nugues. Lth: Semantic structure extraction using
nonprojective dependency trees. In Proceedings of the 4th International Workshop
on Semantic Evaluations, SemEval ’07, pages 227–230, Stroudsburg, PA, USA,
2007. Association for Computational Linguistics.

14. Chrstopher R. Johnson, Charles J. Fillmore, Miriam R.L. Petruck, Collin F. Baker,
Michael J. Ellsworth, Josef Ruppenhofer, and Esther J. Wood. FrameNet: Theory
and Practice, 2002.

15. Paul Kingsbury and Martha Palmer. Propbank: the next level of treebank. In
Proceedings of Treebanks and lexical Theories, volume 3. Citeseer, 2003.

16. Claudia Leacock and Martin Chodorow. Combining local context and wordnet
similarity for word sense identification. WordNet: An electronic lexical database,
49(2):265–283, 1998.

17. John Lehmann, Sean Monahan, Luke Nezda, Arnold Jung, and Ying Shi. LCC
approaches to knowledge base population at TAC 2010. In Proceedings of the Third
Text Analysis Conference, TAC 2010, Gaithersburg, Maryland, USA, November
15-16, 2010. NIST, 2010.

18. Dekang Lin. An information-theoretic definition of similarity. In Jude W. Shavlik,
editor, Proceedings of the Fifteenth International Conference on Machine Learn-
ing (ICML 1998), Madison, Wisconsin, USA, July 24-27, 1998, pages 296–304.
Morgan Kaufmann, 1998.

19. Mausam, Michael Schmitz, Stephen Soderland, Robert Bart, and Oren Etzioni.
Open language learning for information extraction. In Jun’ichi Tsujii, James Hen-
derson, and Marius Pasca, editors, Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, EMNLP-CoNLL 2012, July 12-14, 2012, Jeju Island, Korea,
pages 523–534. ACL, 2012.

20. George A. Miller. Wordnet: A lexical database for english. Commun. ACM,
38(11):39–41, 1995.

21. Mohammad Taher Pilehvar, David Jurgens, and Roberto Navigli. Align, disam-
biguate and walk: A unified approach for measuring semantic similarity. In Pro-
ceedings of the 51st Annual Meeting of the Association for Computational Linguis-
tics, ACL 2013, 4-9 August 2013, Sofia, Bulgaria, Volume 1: Long Papers, pages
1341–1351. The Association for Computer Linguistics, 2013.

22. Philip Resnik. Using information content to evaluate semantic similarity in a
taxonomy. arXiv preprint cmp-lg/9511007, 1995.

23. Konstantinos Sagonas, Terrance Swift, and David S. Warren. Xsb as an efficient
deductive database engine. In In Proceedings of the ACM SIGMOD International
Conference on the Management of Data, pages 442–453. ACM Press, 1994.

24. Karin Kipper Schuler. Verbnet: A Broad-coverage, Comprehensive Verb Lexicon.
PhD thesis, University of Pennsylvania, Philadelphia, PA, USA, 2005. AAI3179808.

25. Rolf Schwitter. English as a formal specification language. In 13th Interna-
tional Workshop on Database and Expert Systems Applications (DEXA 2002), 2-6
September 2002, Aix-en-Provence, France, pages 228–232. IEEE Computer Society,
2002.

26. Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of se-
mantic knowledge. In Proceedings of the 16th international conference on World
Wide Web, pages 697–706. ACM, 2007.

Achieving High Quality Knowledge Acquisition using CNL 11

27. Mihai Surdeanu, David McClosky, Mason R. Smith, Andrey Gusev, and Christo-
pher D. Manning. Customizing an information extraction system to a new domain.
In Proceedings of the ACL 2011 Workshop on Relational Models of Semantics,
RELMS ’11, pages 2–10, Stroudsburg, PA, USA, 2011. Association for Computa-
tional Linguistics.

28. Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledge-
base. Communications of the ACM, 57(10):78–85, 2014.

29. Zhibiao Wu and Martha Stone Palmer. Verb semantics and lexical selection. In
James Pustejovsky, editor, 32nd Annual Meeting of the Association for Compu-
tational Linguistics, 27-30 June 1994, New Mexico State University, Las Cruces,
New Mexico, USA, Proceedings., pages 133–138. Morgan Kaufmann Publishers /
ACL, 1994.

Improved Filtering for the Bin-Packing with
Cardinality Constraint

Guillaume Derval1(main author, PhD student), Jean-Charles Régin2

(co-author) and Pierre Schaus1 (advisor)

1 UCLouvain, Belgium,
guillaume.derval@uclouvain.be, pierre.schaus@uclouvain.be

2 University of Nice Sophia-Antipolis, France,
jcregin@gmail.com

Abstract. Previous research shows that a cardinality reasoning can im-
prove the pruning of the bin-packing constraint. We introduce a filtering
on the load and cardinality bounds of the bins, using a flow reasoning
similar to the Global Cardinality Constraint. Moreover, we detect impos-
sible assignments of items by combining the load and cardinality of the
bins. We experiment our new algorithms on Balanced Academic Curricu-
lum Problem and Tank Allocation Problem instances. Our results show
that the introduced filtering can sometimes drastically reduce the size of
the search tree and the computation time.

Keywords: Bin-packing, cardinality, flows, constraints

Extending Compact-Table to Basic Smart Tables

Hélène Verhaeghe1 (PhD student), Christophe Lecoutre2 (co-author), Yves Deville1

(advisor), and Pierre Schaus1 (advisor)

1UCLouvain, ICTEAM, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium,
{firstname.lastname}@uclouvain.be

2CRIL-CNRS UMR 8188, Université d’Artois, F-62307 Lens, France, lecoutre@cril.fr

Abstract. Table constraints are instrumental in modeling combinatorial prob-
lems with Constraint Programming. Recently, Compact-Table (CT) has been pro-
posed and shown to be as an efficient filtering algorithm for table constraints,
notably because of bitwise operations. CT has already been extended to handle
non-ordinary tables, namely, short tables and/or negative tables. In this paper, we
introduce another extension so as to deal with basic smart tables, which are ta-
bles containing universal values (∗) as well as restrictions on values (6= v) bounds
(≤ v or ≥ v) and sets (∈ S). Such tables offer the user a better expressiveness
and permit to deal efficiently with compressed tuples. Our experiments show a
substantial speedup when compression is possible (and a very limited overhead
otherwise).

Keywords: Table Constraints, Filtering, Compression, Compact-Table, Bitset

CoverSize: A Global Constraint for
Frequency-based Itemset Mining

Pierre Schaus1? and John O.R. Aoga1,2?? and Tias Guns3? ? ?

1UCLouvain, ICTEAM (Belgium); 2UAC, ED-SDI (Benin)
3VUB Brussels (Belgium) and KU Leuven (Belgium)

{john.aoga,pierre.schaus}@uclouvain.be; tias.guns@{vub.be,cs.kuleuven.be}

Abstract. Constraint Programming is becoming competitive for solving
certain data-mining problems largely due to the development of global
constraints. We introduce the CoverSize constraint for itemset mining
problems, a global constraint for counting and constraining the num-
ber of transactions covered by the itemset decision variables. We show
the relation of this constraint to the well-known table constraint, and
our filtering algorithm internally uses the reversible sparse bitset data
structure recently proposed for filtering table. Furthermore, we expose
the size of the cover as a variable, which opens up new modeling per-
spectives compared to an existing global constraint for (closed) frequent
itemset mining. For example, one can constrain minimum frequency, or
compare the frequency of an itemset in different datasets as is done in
discriminative itemset mining. We demonstrate experimentally on the
frequent, closed and discriminative itemset mining problems that the
CoverSize constraint with reversible sparse bitsets allows to outperform
other CP approaches.

? Pierre Schaus is the supervisor
?? John AOGA is the student

? ? ? Tias Guns is a co-author

Weight-Aware Core Extraction in
SAT-Based MaxSAT Solving?

Jeremias Berg?? and Matti Järvisalo? ? ?

HIIT, Department of Computer Science, University of Helsinki, Finland

Abstract. Several recent breakthroughs in solver technology for the constraint
optimization paradigm of maximum satisfiability (MaxSAT), based on Boolean
satisfiability (SAT) solvers, are making MaxSAT today a competitive approach
to tackling NP-hard optimization problems in a variety of AI and industrial do-
mains. A great majority of the modern state-of-the-art MaxSAT solvers are core-
guided, relying on a SAT solver to iteratively extract unsatisfiable cores of the soft
clauses in the working formula and ruling out the found cores via adding cardinal-
ity constraints into the working formula until a solution is found. In this work we
propose weight-aware core extraction (WCE) as a refinement to the current com-
mon approach of core-guided solvers. WCE integrates knowledge of soft clause
weights into the core extraction process, and allows for delaying the addition of
cardinality constraints into the working formula. Enabled by implementing clause
cloning through assumptions, we show that WCE noticeably improves in practice
the performance of PMRES, one of the recent core-guided MaxSAT algorithms
using soft cardinality constraints. We also explain how the approach can be inte-
grated into other core-guided algorithms employing soft cardinality constraints,
and to what extent the presented ideas can be used in other SAT-based MaxSAT
approaches.
This paper was accepted at CP 2017. Except for this I have two other papers
accepted:
Minimum-Width Confidence Bands via Constraint Optimization,
Berg, J., Oikarinen, E., Järvisalo, M. J. & Puolamäki, K. at CP and
MaxPre An Extended MaxSAT Preprocessor,
Korhonen, T. M. A., Berg, J., Saikko, P. H. A. & Järvisalo, M. J. at SAT.

? This work was financially supported by Academy of Finland (grants 251170 COIN, 276412,
284591); and DoCS Doctoral School in Computer Science and Research Funds of the Univer-
sity of Helsinki.

?? The Student
? ? ? The Advisor

Branch-and-Check with Explanations for the
Vehicle Routing Problem with Time Windows

Edward Lam1,2 and Pascal Van Hentenryck3

1 CSIRO Data61, Eveleigh NSW 2015, Australia
2 University of Melbourne, Parkville VIC 3010, Australia
3 University of Michigan, Ann Arbor MI 48109-2117, USA

Abstract. This paper proposes the framework of branch-and-check with
explanations (BCE), a branch-and-cut method where combinatorial cuts
are found by general-purpose conflict analysis, rather than by specialized
separation algorithms. Specifically, the method features a master problem
that ignores combinatorial constraints, and a feasibility subproblem that
uses propagation to check the feasibility of these constraints and performs
conflict analysis to derive nogood cuts. The BCE method also leverages
conflict-based branching rules and strengthens cuts in a post-processing
step. Experimental results on the Vehicle Routing Problem with Time
Windows show that BCE is a potential alternative to branch-and-cut. In
particular, BCE dominates branch-and-cut, both in proving optimality
and in finding high-quality solutions quickly.

1 Introduction

Vehicle Routing Problems (VRPs) generalize the Travelling Salesman Problem
(TSP). The Capacitated Vehicle Routing Problem (CVRP) is a basic variant
that aims to design routes of minimal travel distance that deliver all requests
from a single depot while respecting vehicle capacity constraints. The Vehicle
Routing Problem with Time Windows (VRPTW) additionally requires requests
to be delivered within a given time window.

VRPs have been studied extensively over the past several decades, result-
ing in significant computational progress (e.g., [31]). Solution techniques in-
clude constraint programming (e.g., [28,7,8]), branch-and-bound, branch-and-cut
(e.g., [21,4,18]), branch-and-price (e.g., [10]), and combinations thereof (e.g.,
[13,3,16,25,26]). Branch-and-cut (BC) methods are of particular interest to this
paper. Their key idea is to omit difficult constraints from the original formula-
tion and to remove solutions that violate these constraints using cuts generated
by separation algorithms. Separation algorithms are typically problem-specific,
which limits their applicability and reuse in other problems. Furthermore, devel-
oping and implementing separation algorithms often require significant expertise,
hindering their use in many applications.

This paper addresses the following research question: Is it possible to use a
general-purpose mechanism to generate cuts, and hence, avoid the difficult aspects
of BC. This paper proposes branch-and-check with explanations (BCE) as one

possible answer to this question. BCE divides an optimization problem into a
master problem that ignores a number of difficult constraints, and a subproblem
that checks the feasibility of these constraints and generates cuts using conflict
analysis from constraint programming (CP) and Boolean satisfiability (SAT).
More precisely, BCE uses CP for three purposes: (1) to fix variables in the master
problem through propagation; (2) to generate cuts in the master problem using
conflict analysis; and (3) to probe the feasibility of linear programming (LP)
relaxation solutions and to derive additional cuts through conflict analysis if the
probing process fails. Since the master problem does not operate on the same
decision variables as the subproblem, the conflict analysis needs to continue until
the variables involved in a nogood appear in the master problem.

BCE opens some interesting opportunities. First, it has the advantage of
relying on a general-purpose CP engine for inference and cut separation. Second,
it permits conflict-based branching rules. Finally, BCE can recognize special
classes of cuts after conflict analysis and then strengthen them using well-known
techniques. As a result, BCE offers a natural integration of LP, CP and SAT.

The BCE method is evaluated on the VRPTW. Experimental results indicate
that BCE outperforms a BC algorithm: it proves optimality on more instances
and finds significantly better solutions to instances for which BC cannot prove op-
timality. The results also show that a conflict-based branching rule is particularly
effective in BCE and that cut strengthening produces interesting improvements
to the lower bounds.

The rest of this paper is structured as follows. Section 2 reviews relevant
methods for solving the VRPTW. Section 3 develops the BCE model. Section 4
discusses cut strengthening. Section 5 presents experimental results that compare
the BCE model with the BC model. Section 6 discusses the limitations and
potential improvements of the BCE approach for the VRPTW, as well as its
relevance to branch-and-price. Section 7 concludes this paper.

2 Background

BC algorithms for VRPs are often based on a two-index flow model, which
generalizes the standard formulation of the TSP. The two-index model omits
the subtour elimination, vehicle capacity and time window constraints, which
are added as required through cutting planes. At every node of the search tree,
BC solves separation subproblems to determine if the LP relaxation solution is
feasible with respect to the omitted constraints. If the solution is infeasible, the
solution is discarded using a cut, forcing the solver to find another candidate
solution. Branching and cutting are repeated until the search tree is explored,
upon which the solver proves optimality or infeasibility.

Branch-and-Cut. BC models of the VRPTW rely on several types of cuts. The
BC model in [4] inherits the capacity cuts from BC models of the CVRP. Capacity
cuts generalize the subtour elimination cuts of the TSP to consider vehicle capacity.
Hence, they serve the purpose of excluding both subtours and partial paths that

exceed the vehicle capacity. This model also implements infeasible path cuts to
exclude partial paths that violate the time windows. Infeasible path cuts require
at least one arc in an infeasible partial path to be unused. The BC algorithm from
[18] uses subtour elimination constraints from the TSP instead of the capacity
cuts. Vehicle capacity constraints are enforced by the same infeasible path cuts
that enforce the time windows. The authors also prove that both the subtour
elimination cuts and the infeasible path cuts can be strengthened using ideas
conceived in [22].

Branch-and-Check. Branch-and-check [29,5] is a form of logic-based Benders
decomposition [15]. The method divides a problem into a master and checking
problem. The master problem is first solved to find a candidate solution, which is
checked using the checking subproblem. If the checking subproblem is infeasible
for a candidate solution, a constraint prohibiting this solution, and hopefully
many others, is added to the master problem. Branch-and-check iterates between
the master problem and the checking subproblem until a globally optimal solution
is found. It has been used successfully in various applications (e.g., [14,30]). The
key difference between BC and branch-and-check is that checking subproblems
encompass an entire optimization problem, whereas separation subproblems only
check specific aspects of the problem (i.e., they find cuts from one family).

Constraint Programming. CP with large neighborhood search was instrumental
in finding many best solutions to VRPs more than a decade ago [28,7,8]. The
main difficulty with CP is proving optimality since VRP objective functions are
usually linear, which are known to have weak propagators. This limitations can
be alleviated using the WeightedCircuit global constraint [6], for example.

Conflict Analysis. Conflict analysis has a long history in artificial intelligence
and CP (e.g., [9,17]). Its popularity grew in the last two decades through the
development of SAT solvers (e.g., [23,11]) and their integration in CP solvers (e.g.,
[24,12]). In CP solvers, propagators generate clauses that explain the inferences
for an underlying SAT solver. When a propagator fails, the SAT solver performs
conflict analysis, i.e., it walks the implication graph to derive a constraint, known
as a nogood, that prevents the same failure from reoccurring in other parts
of the search tree. Conflict analysis can also be implemented in mixed integer
programming (MIP) solvers but its performance is still an open question [1].

3 The Branch-and-Check Model of the VRPTW

This section proposes the BCE model of the VRPTW. The model is organized
around a MIP master problem and a CP checking subproblem.

The MIP Master Problem. The BCE model includes the traditional two-index
model. Its data and decision variables are listed in Table 1. The arcs in the

Name Description

T > 0 Time horizon.
T = [0, T] Time interval.
Q ≥ 0 Vehicle capacity.
Q = [0, Q] Range of vehicle load.
R ∈ {1, . . . ,∞} Number of requests.
R = {1, . . . , R} Set of requests.
s = 0 Start node.
e = R + 1 End node.
N = R∪ {s, e} Set of all nodes.
A Arcs of the network. Defined in Eq. (4).
ci,j ∈ T Distance cost and travel time along arc (i, j) ∈ A.
qi ∈ Q Vehicle load demand of i ∈ N .
ai ∈ T Earliest service start time at i ∈ N .
bi ∈ T Latest service start time at i ∈ N .

xi,j ∈ {0, 1} Decision variable indicating if a vehicle traverses (i, j) ∈ A.

Table 1. Data and decision variables of the two-index flow model of the VRPTW. Sets
enclosed in braces (resp. square brackets) are integer-valued (resp. real-valued).

min
∑

(i,j)∈A
ci,jxi,j (1)

subject to

∑

h:(h,i)∈A
xh,i = 1 ∀i ∈ R, (2)

∑

j:(i,j)∈A
xi,j = 1 ∀i ∈ R. (3)

Fig. 1. Initial constraints of the two-index model of the VRPTW.

network are given by

A = {(s, i)|i ∈ R}∪
{(i, j)|i, j ∈ R, i 6= j, ai + ci,j ≤ bj , qi + qj ≤ Q}∪
{(i, e)|i ∈ R}.

(4)

The initial constraints of the model are shown in Fig. 1. The objective function,
Eq. (1), minimizes the total distance cost. Constraints (2) and (3) require every
request to be visited exactly once. Through its LP relaxation, the MIP master
problem provides the lower bounds to the objective value and generates candidate
solutions to be tested in the CP subproblem.

Name Description

yi,j ∈ {0, 1} Decision variable indicating if a vehicle traverses (i, j) ∈ A.
li ∈ [qi, Q] ⊆ Q Vehicle load after service at request i ∈ N .
ti ∈ [ai, bi] ⊆ T Time that a vehicle begins service at request i ∈ N .

Table 2. Decision variables of the CP subproblem.

∨

h:(h,i)∈A
yh,i ∀i ∈ R, (5)

∨

j:(i,j)∈A
yi,j ∀i ∈ R, (6)

¬yh,i ∨ ¬yh,j ∀h, i, j ∈ N : (h, i) ∈ A, (h, j) ∈ A, i 6= j, (7)

¬yh,j ∨ ¬yi,j ∀h, i, j ∈ N : (h, j) ∈ A, (i, j) ∈ A, h 6= i, (8)

NoSubtour(y), (9)

yi,j → lj ≥ li + qj ∀(i, j) ∈ A, (10)

yi,j → tj ≥ ti + ci,j ∀(i, j) ∈ A. (11)

Fig. 2. Initial constraints of the CP subproblem.

The CP Checking Subproblem. The BCE model uses a CP subproblem to
check the solutions found by the master problem for feasibility of the subtour
elimination, vehicle capacity and time window constraints. The decision variables
are listed in Table 2. Using the y binary variables, instead of the conventional
successor and predecessor variables, provides a one-to-one mapping between the
y variables and the x variables of the master problem. The initial constraints
(without the nogoods) are presented in Fig. 2. Constraints (5) to (8) ensure that
every request is visited exactly once. Constraint (9) is a global constraint that
prevents subtours. Its propagator is a simple checking algorithm that prevents
the head of a partial path from connecting to its tail. Constraints (10) and (11)
enforce the vehicle capacity and travel time constraints.

Communication between the Two Models. The two models communicate in
three ways: (1) variable assignments in the CP model are transmitted to the MIP
model, (2) candidate solutions from the LP relaxation are probed using the CP
model to determine if they are valid for the VRPTW and (3) nogoods found by
conflict analysis in the CP model are translated into cuts in the MIP model.

Extended Conflict Analysis. When a failure occurs in the CP solver, conflict
analysis derives a First Unique Implication Point (1UIP) nogood that is added to
the CP subproblem. This constraint should also be added to the master problem
but sometimes it cannot be translated into a cut for the master problem because

it contains variables that do not appear in the master problem (i.e., the load and
time variables). As a result, the BCE algorithm features an extended conflict
analysis that continues explaining the failure until the the nogood only contains
variables in master problem. This nogood has the form

∨

(i,j)∈C1
yi,j ∨

∨

(i,j)∈C2
¬yi,j ,

where C1, C2 ⊆ A are sets of arcs. This nogood can be rewritten as the cut

∑

(i,j)∈C1
xi,j +

∑

(i,j)∈C2
(1− xi,j) ≥ 1.

It is always possible to obtain these cuts since the solver only branches on
variables in the master problem. Observe that the BCE algorithm provides a
general-purpose mechanism to separate cuts in the master problem via the extended
conflict analysis. These cuts, which we call MIP-1UIP nogoods, are automatically
generated and do not rely on specialized separation algorithms.

Probing the LP Relaxation. The BCE algorithm probes whether the current
LP solution is feasible with respect to the subtour elimination, vehicle capacity
and time constraints. It temporarily assigns every yi,j variable to the value of
its corresponding xi,j variable in the LP relaxation, provided that this value is
integral. The resulting tentative assignment can then be propagated by the CP
solver. If a failure occurs, conflict analysis generates nogoods for both the CP
and MIP models. The MIP cut will exclude the current LP solution, forcing it to
find another candidate solution and improving the lower bound.

The Search Algorithm. The BCE algorithm, detailed in Fig. 3, includes the
components described earlier. It blends depth-first and best-first search since
best-first search is more effective for hard optimization problems, such as VRPs,
but complicates the implementation of CP solvers with conflict analysis. The
node selection strategy selects the node with the lowest lower bound from the
set of open nodes and then explores the node subtree using depth-first search
until it reaches a limit on the maximum number of open nodes per subtree. Once
it reaches this limit, all unsolved siblings in the subtree are moved into the set
of open nodes, and then the algorithm starts a new depth-first search from the
node with the next lowest lower bound. Section 6 explains the rationale behind
this search procedure.

Once a node is selected (step 1), the CP subproblem infers the implications
of the decision (step 2). In the case of failure, the CP solver generates nogoods
for both models and then backtracks (step 5b). If the test succeeds, the BCE
algorithm checks for suboptimality using the LP relaxation (step 3). If the node
is suboptimal, it backtracks (step 5b). Otherwise, the BCE algorithm checks the
LP relaxation solution against the omitted constraints and separates cuts using
conflict analysis if necessary (step 4). The BCE algorithm iterates between the
LP relaxation and the feasibility test until no cuts are generated. Then, if the

1. Node Selection: Select an open node. Terminate if no open nodes remain.
2. Feasibility Check: Solve the CP model to determine the implications of the

branching decision of the node. If propagation fails, perform conflict analysis, add
the 1UIP and the MIP-1UIP nogoods to both the CP and MIP models, and go to
step 5b. Otherwise, fix xi,j in the MIP model to the values of the yi,j variables.

3. Suboptimality Check: Solve the LP relaxation. If the objective value is worse
than the incumbent solution, go to step 5b.

4. LP Probing: For all xi,j variables with a value of 0 or 1 in the LP relaxation,
temporarily fix the yi,j variables in the CP model to the same value. Propagate
the CP model. If it fails, perform conflict analysis, generate the 1UIP and the
MIP-1UIP nogoods and go back to step 3.

5. Branching and Backtracking: If all xi,j variables are integral, store the LP
relaxation solution as the incumbent solution and go to step 5b. Otherwise, go to
step 5a because the node is fractional.

(a) Branching: Create two children nodes from a fractional xi,j variable. Fix the
variable to 0 in one child node and to 1 in the other.

(b) Backtracking: If the number of nodes in the current subtree exceeds the limit
or if the subtree is entirely solved, move all unsolved siblings in the subtree
to the set of open nodes and go back to step 1. Otherwise, backtrack to an
ancestor with an unsolved child node, select the child node and go to step 2.

Fig. 3. The BCE Search Algorithm.

node is fractional and not suboptimal, the BCE algorithm executes a branching
step (step 5a). Two branching rules are implemented. The first selects the most
fractional variable and the second selects the variable with the highest activity,
which is defined as the number of nogoods in which the variable has previously
appeared. This branching rule, known as activity-based search or variable state
independent decaying sum (VSIDS) in the literature, guides the search tree
towards subtrees that can be quickly pruned due to infeasibility.

Illustrating the Extended Conflict Analysis. The following discussion illustrates
the extended conflict analysis procedure using the example in Figs. 4 and 5.
Literals shown in a grey are fixed by the data at the root level, and hence, are
always true. They are discarded in the explanations but are shown for clarity.

The BCE solver first branches on ¬y4,6, making it true. The travel time
constraint (Constraint (11)) propagates Jt6 ≥ 30K with the reason

¬y4,6 ∧ Jt3 ≥ 25K ∧ Jc3,6 = 10K ∧ Jt5 ≥ 20K ∧ Jc5,6 = 10K→ Jt6 ≥ 30K

because the predecessor of request 6 must be either 3 or 5, and the earliest time to
reach 6 is at time min(min(t3) + c3,6,min(t5) + c5,6) = 30. The BCE solver then
branches on ¬y3,6. Constraint (5) requires every request to have a predecessor,
which leads to the assignment of y5,6 with the reason

¬y3,6 ∧ ¬y4,6 → y5,6.

Constraint (8) then propagates

y5,6 → ¬y5,2

and

y5,6 → ¬y5,7.

The BCE solver then branches on y0,1, which does not produce any inference,
and then branches on y6,2, which produces the inferences:

y6,2 → ¬y6,7,

¬y6,7 ∧ ¬y5,7 → y2,7,

y6,2 ∧ Jt6 ≥ 30K ∧ Jc6,2 = 10K→ Jt2 ≥ 40K.

Then, the travel time propagator fails with

y2,7 ∧ Jt2 ≥ 40K ∧ Jc2,7 = 10K ∧ Jt7 ≤ 40K→ false.

Conflict analysis deduces the following:

y2,7 ∧ Jt2 ≥ 40K ∧ Jc2,7 = 10K ∧ Jt7 ≤ 40K→ false

y2,7 ∧ Jt2 ≥ 40K ∧ true ∧ true→ false

(¬y6,7 ∧ ¬y5,7) ∧ (y6,2 ∧ Jt6 ≥ 30K ∧ Jc6,2 = 10K)→ false

y6,2 ∧ ¬y5,7 ∧ Jt6 ≥ 30K ∧ true→ false

y6,2 ∧ ¬y5,7 ∧ Jt6 ≥ 30K→ false. (12)

This explanation contains exactly one literal (y6,2) at the current depth, and
hence, is rewritten as the 1UIP clause

¬y6,2 ∨ y5,7 ∨ Jt6 < 30K,

which is added to the CP model. Conflict analysis must continue because the
nogood contains a time literal. It explains Jt6 ≥ 30K in Eq. (12), which results in
the MIP-1UIP explanation

y6,2 ∧ ¬y5,7 ∧ ¬y4,6 → false.

This explanation is rewritten into the disjunction

¬y6,2 ∨ y5,7 ∨ y4,6, (13)

and then into the cut

(1− x6,2) + x5,7 + x4,6 ≥ 1.

Note that the literal y5,7 was not assigned by the search.

0

[0, 0]

1

[30, 60]

2

[20, 60]

3[25, 40]

4 [10, 40]

5

[20, 40]

6 [20, 40]

7 [30, 40]

Others

Others

Fig. 4. Example of a network. Next to every request is its time window. The travel
time across any arc is 10 units of time. The load demands are not shown as they are
not relevant to the discussion.

¬y4,6

t3 ≥ 25

c3,6 = 10

t5 ≥ 20

c5,6 = 10

t6 ≥ 30

¬y3,6

y5,6

¬y5,7 ¬y5,2

y0,1 y6,2

¬y6,7 t2 ≥ 40

y2,7

c6,2 = 10

c2,7 = 10

t7 ≤ 40false

Fig. 5. Example of an implication graph after making the decisions ¬y4,6, ¬y3,6, y0,1
and y6,2 on the network in Fig. 4. Yellow literals are branching decisions. Blue literals
are propagations. Grey literals are propagated at the root level, and hence, can be
excluded from the nogoods since they are always true.

4 Nogood Strengthening

The BCE algorithm presented so far uses a completely general-purpose mechanism
for cut separation. Despite its generality, conflict analysis routinely discovers
classical cuts. These cuts can be strengthened using proven techniques whenever
they are recognized. This section presents a post-processing step that recognizes
then strengthens several types of cuts.

Infeasible Path Cuts. Failure of the load or time constraints (Constraints (10)
and (11)) frequently results in an infeasible partial path cut. Let P = i1, i2, . . . , ik,
with all i1, . . . , ik ∈ N distinct, be a partial path. The partial path P is infeasible
with respect to the load constraint if

∑k
u=1 qiu > Q, and it is is infeasible

with respect to the time constraint if tik > bik , where ti1 = ai1 and tiu =
max(aiu , tiu−1

+ciu−1,iu) for u = 2, . . . , k. When a load or time window constraint
fails, conflict analysis will usually produce the nogood

∨

(i,j)∈A(P)

¬yi,j , (14)

where A(P) = {(i1, i2), . . . , (ik−1, ik)} is the arcs of P . This nogood requires one
arc of P to be unused. It can be written equivalently as requiring at least one
arc that exits P , i.e., ∨

(i,j)∈∆+(P)

yi,j ,

where ∆+(P) =
⋃k−1
u=1{(iu, j) ∈ A|j 6= iu+1}. This nogood can be translated into

the cut ∑

(i,j)∈∆+(P)

xi,j ≥ 1.

Using existing techniques [18], such a cut can be strengthened into

∑

(i,j)∈∆̃+(P)

xi,j ≥ 1,

where

∆̃+(P) =

k−1⋃

u=1

({
(iu, j) ∈ A : iu ∈ R, j ∈ R, j 6= i1, . . . , iu+1,

u∑

v=1

qiv + qj ≤ Q, tiu + ciu,j ≤ bj
}
∪ {(iu, e) ∈ A}

)

is the arcs that branch off P to a feasible request. In other words, the strengthening
discards arcs that are not feasible when taking into account the load and time
window constraints.

Subtour Elimination Cuts. The propagator of Constraint (9) will fail if the solu-
tion contains a subtour S = i1, i2, . . . , ik, where i1 = ik and all i1, i2, . . . , ik−1 ∈ R
are distinct. Conflict analysis will usually find the nogood

∨

(i,j)∈A(S)

¬yi,j , (15)

where A(S) = {(i1, i2), . . . , (ik−1, ik)} is the arcs of S. Using the same reasoning
as for the infeasible path cuts, this nogood can be rewritten as the cut

∑

(i,j)∈∆+(S)

xi,j ≥ 1. (16)

If aj + cj,i > bi, then no vehicle can depart j for i while respecting the time
windows. Hence, i must precede j with respect to time, written as i ≺ j. Let
π(j) = {i ∈ N|i ≺ j} be the set of requests that precedes j with respect to time.
Proposition 1 strengthens Constraint (16) using these precedence relations [18].
Constraint (16) can also be similarly strengthened using the precedence relations
in reverse, i.e., successor relations.

Proposition 1. Let S̄ = N \ S be the nodes not in a subtour S, then for any
u ∈ S, Constraint (16) can be strengthened to

∑

(i,j)∈A:
i∈S\π(u),
j∈S̄\π(u)

xi,j ≥ 1.

Proof. Consider a subtour S and a feasible path F that visits the request u. Let
v ∈ R be the last request of F visited by S. By definition, v is visited by S, i.e.,
v ∈ S. Furthermore, since F is a feasible path, v cannot precede u with respect
to time, i.e., v /∈ π(u). Hence, v ∈ S \ π(u). Now consider the successor of v,
denoted by succ(v) ∈ N . By the definition of v, succ(v) cannot be visited by S,
i.e., succ(v) /∈ S. Again, succ(v) cannot precede u with respect to time since F is
a feasible path. Hence, succ(v) ∈ S̄ \ π(u). Considering every request in S as v
results in the proposition.

General Cuts. Conflict analysis can derive cuts that are do not have the form
of Constraint (14) nor Constraint (15). These cuts contain both true literals
and false literals, such as those of Constraint (13). They originate from fixing
an arc to be unused (i.e., setting xi,j = 0 for some (i, j) ∈ A), which can result
in tightening the bounds of a time or load variable. Consequently, an assigned
arc can become infeasible. Hence, the originating nogood will contain both true
and false literals. We are not aware of VRP cuts in the literture that mix true
literals and false literals. This is possibly because tightening bounds is too costly
for every call to a separation algorithm. CP maintains the bounds internally as
part of propagation, and hence, the bounds are readily available. Because of this,
these cuts seem to be fundamentally linked to CP. It is an open research issue to
understand whether these cuts can be strengthened.

5 Experimental Results

The Solvers. The BCE solver includes a small CP solver and calls Gurobi 6.5.2
to solve the LP relaxations. The algorithm presented in Fig. 3 has a limit of 500
nodes for the depth-first search. This number was chosen experimentally as it
was superior to limits of 100, 1,000, 5,000, and 10,000 nodes. The experiments
consider four versions of the solver: with and without cut strengthening, and
with the two branching rules. The four versions are compared against published
results of a BC model [18], as well as a pure CP model and a pure MIP model.
The CP model is the standard VRPTW model based on successor variables (e.g.,
[19,27]), and is solved using Chuffed. The MIP model is the three-index flow
model (e.g., [31]), and is solved using Gurobi. The reported results for the BC
model are given an hour of CPU time on a Pentium III CPU at 600 MHz. To be
fair, our solvers are run for 10 minutes on a Xeon E5-2660 V3 at 2.6 GHz.

The Results. The solvers are tested on the Solomon benchmarks with 100
requests. The results are reported in Table 3. The pure CP model failed to find
any feasible solution and is omitted from the table. The pure MIP model proves
optimality on only one instance and finds poor solutions to three other instances.
These results were expected and are given to confirm the need for the other
approaches. The rest of this section compares the BC and BCE approaches.

Upper Bounds. The four BCE methods find the same or better solutions than
the BC algorithm for all instances except C204. Of the best solutions found, all
but two (R201, C204) can be found using the activity-based branching rule. For
the C instances, BC and BCE with activity-based search and cut strengthening
are comparable since they both dominate on seven of the eight instances. For
the R and RC instances, BCE with activity-based search improves upon the BC
method, which generally finds solutions with costs about five times higher.

Lower Bounds. First observe that BCE with activity-based search and cut
strengthening proves optimality on one more instance (RC201) than BC, which is
quite remarkable. The bounds found by the BC model are superior to those from
all BCE methods except for instance RC201, on which BCE with activity-based
search and cut strengthening finds a tighter bound. This is not surprising since the
BC algorithm implements families of cuts not present in the BCE model. These
families of cuts capture logic that the constraints in the checking subproblem do
not. As will be mentioned in Section 6, stronger dual bounds should be available
once the BCE model is expanded with optimization constraints.

The Impact of Branching Rules. Activity-based branching performs significantly
better than most-fractional branching. Without cut strengthening, activity-
based branching finds solutions better than most-fractional branching on all
instances except C201, on which all four BCE methods prove optimality. With
cut strengthening, activity-based search performs better on 19 of the 27 instances,
and worse on only one instance. This is not surprising given that branching on
the most fractional variable is known to perform worse than random selection [2].

The Impact of Cut Strengthening. Cut strengthening improves the lower bounds
for both branching rules. For the C instances, cut strengthening is critical for
proving optimality. For the RC instances except RC208, BCE with activity-based
branching and cut strengthening finds solutions better than the other methods.
Cut strengthening interferes with the activity-based branching rule for about
half of the R instances. The cause of this interference is not yet understood.

The results indicate that BCE is an interesting avenue for solving hard VRPs.
The BCE model finds superior primal solutions despite its simplicity and the
fact that it is missing many families of cuts and that the checking subproblem
does not reason about optimality nor variables with fractional values in the LP
relaxation solution. For practitioners without the expertise in BC, BCE provides
an interesting and practically appealing alternative.

6 Future Research Directions

The BCE algorithm, presented in this paper as a proof-of-concept, can be
improved in many ways. This section explores some potential improvements.

Branching. The branching rules simply assign a fractional variable to 0 in one
child and 1 in the other. These branching rules make the search tree highly
unbalanced, considerably degrading the performance of the solver. Future imple-
mentations should test branching on cutsets, which is the standard branching
rule seen in BC models of VRPs. It would also be interesting to test branching
on variables in the CP model (e.g., branching on time windows) by propagating
these decisions and enforcing the implications in the MIP model.

Search Strategy. VRPs greatly benefit from best-first search. For simplicity, the
BCE implementation uses depth-first search, which allows literals to be stored in
a stack data structure. It is obviously possible to implement conflict analysis in
best-first search but efficient implementations remain an open question today. As
explained in Section 3, the BCE implementation blends depth-first search with
periodic best-first selection to explore attractive parts of the search tree.

Subtour Elimination. The propagator of Constraint (9) is extremely simple
and only eliminates assignments that would create a cycle. This contrasts with
separation algorithms, which are able to separate cuts using fractional solutions.
It would be highly desirable to study the impact of more advanced propagators
and explanations for subtour elimination in CP.

Cut Strengthening. The CP model contains all the omitted constraints; namely,
the subtour elimination, vehicle capacity and time window constraints. As a
result, conflict analysis can deduce nogoods based on the combined infeasibility
of multiple constraints. In contrast, separation algorithms only reason about one
family of cuts. It is an open question whether conflict analysis can automatically
strengthen the cuts by reasoning about a conjunction of constraints. This will
reduce the need to develop dedicated cut strengthenings.

Branch-and-Check – Most-Fractional Branch-and-Check – Activity-based

No Strengthening With Strengthening No Strengthening With Strengthening Branch-and-Cut MIP

Instance LB UB Time LB UB Time LB UB Time LB UB Time LB UB Time LB UB Time

R201 1055.8 1198.0 - 1117.7 1143.3 - 1054.7 1177.6 - 1114.3 1149.9 - 1132.7 1155.6 - 975.6 - -
R202 762.8 1213.0 - 852.1 1219.6 - 763.2 1133.4 - 850.7 1109.3 - 888.6 4980.0 - 715.3 - -
R203 660.1 1244.8 - 709.8 1253.6 - 659.9 1025.2 - 707.7 1052.2 - 748.1 4980.0 - 620.3 - -
R204 625.3 1166.7 - 639.2 1193.3 - 625.8 858.4 - 638.3 887.4 - 661.9 4980.0 - 584.9 - -
R205 796.3 1222.0 - 889.6 1069.9 - 794.3 1091.3 - 876.9 1052.5 - 900.0 4980.0 - 732.3 - -
R206 686.3 1171.6 - 751.4 1157.4 - 686.0 1040.1 - 745.3 1018.9 - 783.6 4980.0 - 644.8 - -
R207 648.1 1187.5 - 681.5 1168.5 - 647.5 940.7 - 685.8 941.4 - 714.8 4980.0 - 603.1 - -
R208 623.2 1097.4 - 633.5 1187.7 - 623.4 855.0 - 635.3 832.5 - 651.8 4980.0 - 577.2 - -
R209 687.5 1238.1 - 756.6 1172.5 - 686.5 1046.6 - 753.1 1073.8 - 785.8 4980.0 - 648.2 - -
R210 679.7 1225.6 - 749.9 1240.3 - 679.8 1105.6 - 750.8 1024.9 - 798.3 4980.0 - 636.6 - -
R211 621.2 1335.5 - 633.0 1355.9 - 621.2 1004.2 - 632.1 1065.1 - 645.1 4980.0 - 577.2 4224.9 -

C201 589.1 589.1 0.0 589.1 589.1 0.0 589.1 589.1 0.0 589.1 589.1 0.0 589.1 589.1 11.5 589.1 589.1 15.2
C202 548.7 679.8 - 589.1 589.1 131.2 548.2 629.9 - 589.1 589.1 12.6 589.1 589.1 202.9 524.3 - -
C203 526.5 948.3 - 563.4 672.2 - 524.7 686.5 - 565.9 601.2 - 586.0 632.3 - 507.3 - -
C204 516.3 946.7 - 552.9 1086.7 - 514.7 884.5 - 555.9 660.9 - 584.4 597.1 - 488.3 - -
C205 546.9 685.8 - 586.4 586.4 0.2 546.5 613.1 - 586.4 586.4 16.3 586.4 586.4 334.4 511.4 - -
C206 539.9 776.9 - 586.0 586.0 11.8 538.2 702.6 - 586.0 586.0 10.6 586.0 586.0 419.0 504.7 4997.5 -
C207 542.7 851.1 - 585.8 585.8 20.6 538.3 635.2 - 585.8 585.8 8.3 585.8 585.8 527.5 503.9 - -
C208 534.5 857.2 - 585.8 585.8 60.0 533.1 652.4 - 585.8 585.8 11.2 585.8 585.8 569.7 500.3 - -

RC201 1086.5 1403.6 - 1245.8 1261.8 - 1081.0 1338.3 - 1261.8 1261.8 44.5 1250.1 1288.2 - 938.3 - -
RC202 704.5 1465.9 - 912.7 1418.6 - 699.2 1204.2 - 916.9 1152.3 - 940.1 6609.4 - 641.0 - -
RC203 615.0 1402.7 - 750.2 1359.6 - 610.8 1149.0 - 748.8 1117.6 - 781.6 6609.4 - 563.1 - -
RC204 583.9 1410.2 - 657.8 1352.4 - 581.0 1007.1 - 657.0 923.5 - 692.7 6609.4 - 532.4 - -
RC205 822.5 1511.6 - 1075.5 1307.0 - 818.8 1249.8 - 1055.8 1240.9 - 1081.7 6609.4 - 746.3 - -
RC206 785.4 1485.4 - 964.3 1273.9 - 784.9 1270.2 - 950.7 1202.8 - 974.8 6609.4 - 698.2 - -
RC207 647.3 1486.3 - 794.6 1424.5 - 642.9 1193.5 - 800.9 1172.1 - 832.4 6609.4 - 594.9 - -
RC208 572.7 1629.8 - 624.0 1776.1 - 573.9 1039.5 - 624.3 1078.4 - 647.7 6609.4 - 527.1 5299.5 -

Table 3. Solutions to the Solomon instances with 100 requests. The table reports the lower bound, upper bound and time to prove
optimality for each of the solvers. The best upper bound for each instance is shown in bold. The CP model is omitted as it is unable to
find feasible solutions to any instance.

Optimization Constraints. The objective function has been omitted from the
checking subproblem because propagators for linear function are known to be
weak. Sophisticated propagators for the WeightedCircuit constraint should
be implemented, as they may produce considerably stronger nogoods.

Application to Branch-and-Price. Branch-and-cut-and-price, which includes
column generation and cut generation, is the current state-of-the-art exact
method for solving classical VRPs. Preliminary experiments with an existing
branch-and-price solver show that BCE is not beneficial with column generation
for the VRPTW as nogoods will not be generated in step 4 of Fig. 3 because the
paths already respect the time and capacity constraints. However, step 2 can fail
due to incompatibility between the branching decisions of a node. This infeasibility
cannot be detected by the pricing problem because it has no knowledge of the
global problem, nor detected by the master problem until all paths are generated
because artificial variables satisfy the constraints in the interim. Incompatible
branching decisions can induce nogoods but this seldom occurs in branch-and-
price because its LP relaxation bound is asymptotically tight, allowing it to
discard nodes due to suboptimality much earlier than infeasibility. Hence, branch-
and-price-and-check is unlikely to prove useful in solving classical VRPs. It is,
however, useful for rich VRPs with inter-route constraints (e.g., [20]) because
the pricing subproblem, being a shortest path problem, has no knowledge of the
interactions between routes in the parent problem.

7 Conclusion

This paper proposed the framework of branch-and-check with explanations (BCE)
as a step towards the grand unification of linear programming, constraint program-
ming and Boolean satisfiability. BCE finds cuts using general-purpose conflict
analysis instead of specialized separation algorithms. The method features a
master problem, which ignores a number of constraints, and a checking subprob-
lem, which uses inference to check the feasibility of the omitted constraints and
conflict analysis to derive nogood cuts. It also leverages conflict-based branching
rules and can strengthen cuts using traditional insights from branch-and-cut in a
post-processing step.

Experimental results on the Vehicle Routing Problem with Time Windows
show that BCE is a viable alternative to branch-and-cut. In particular, BCE
dominates branch-and-cut, both in proving optimality (with cut strengthening)
and in finding high-quality solutions.

BCE offers an interesting alternative to existing branch-and-cut approaches.
By using a general-purpose constraint programming solver to derive cuts, BCE
can greatly simplify the modelling of problems that traditionally use branch-
and-cut. This, in turn, avoids the need for dedicated separation algorithms.
BCE is also capable of identifying well-known classes of cuts and strengthening
them in a post-processing step. Finally, BCE significantly benefits from conflict-
based branching rules, opening further opportunities typically not available in
branch-and-cut.

References

1. Achterberg, T.: Conflict analysis in mixed integer programming. Discrete Optimiza-
tion 4(1), 4 – 20 (2007)

2. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Operations Research
Letters 33(1), 42 – 54 (2005)

3. Baldacci, R., Mingozzi, A., Roberti, R.: New route relaxation and pricing strategies
for the vehicle routing problem. Operations Research 59(5), 1269–1283 (2011)

4. Bard, J.F., Kontoravdis, G., Yu, G.: A branch-and-cut procedure for the vehicle
routing problem with time windows. Transportation Science 36(2), 250–269 (2002)

5. Beck, J.C.: Checking-up on branch-and-check. In: Cohen, D. (ed.) Principles and
Practice of Constraint Programming – CP 2010, Lecture Notes in Computer Science,
vol. 6308, pp. 84–98. Springer Berlin Heidelberg (2010)

6. Benchimol, P., Hoeve, W.J., Régin, J.C., Rousseau, L.M., Rueher, M.: Improved
filtering for weighted circuit constraints. Constraints 17(3), 205–233 (2012)

7. Bent, R., Van Hentenryck, P.: A two-stage hybrid local search for the vehicle routing
problem with time windows. Transportation Science 38(4), 515–530 (2004)

8. Bent, R., Van Hentenryck, P.: A two-stage hybrid algorithm for pickup and delivery
vehicle routing problems with time windows. Computers & Operations Research
33(4), 875–893 (2006)

9. Dechter, R.: Learning while searching in constraint-satisfaction-problems. In: Pro-
ceedings of the 5th National Conference on Artificial Intelligence. Philadelphia, PA,
August 11-15, 1986. Volume 1: Science. pp. 178–185 (1986)

10. Desrochers, M., Desrosiers, J., Solomon, M.: A new optimization algorithm for the
vehicle routing problem with time windows. Operations Research 40(2), 342–354
(1992)

11. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A.
(eds.) Theory and Applications of Satisfiability Testing: 6th International Conference,
SAT 2003, Santa Margherita Ligure, Italy, May 5-8, 2003, Selected Revised Papers,
pp. 502–518. Springer Berlin Heidelberg (2004)

12. Feydy, T., Stuckey, P.J.: Lazy clause generation reengineered. In: Gent, I.P. (ed.)
Principles and Practice of Constraint Programming - CP 2009: 15th International
Conference, CP 2009 Lisbon, Portugal, September 20-24, 2009 Proceedings. pp.
352–366. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

13. Fukasawa, R., Longo, H., Lysgaard, J., De Aragão, M.P., Reis, M., Uchoa, E.,
Werneck, R.F.: Robust branch-and-cut-and-price for the capacitated vehicle routing
problem. Mathematical Programming 106(3), 491 – 511 (2006)

14. Gendron, B., Scutellà, M.G., Garroppo, R.G., Nencioni, G., Tavanti, L.: A branch-
and-benders-cut method for nonlinear power design in green wireless local area
networks. European Journal of Operational Research 255(1), 151–162 (2016)

15. Hooker, J.: Logic-based methods for optimization. In: Borning, A. (ed.) Principles
and Practice of Constraint Programming, Lecture Notes in Computer Science, vol.
874, pp. 336–349. Springer Berlin Heidelberg (1994)

16. Jepsen, M., Petersen, B., Spoorendonk, S., Pisinger, D.: Subset-row inequalities
applied to the vehicle-routing problem with time windows. Operations Research
56(2), 497 – 511 (2008)

17. Jussien, N., Barichard, V.: The palm system: explanation-based constraint pro-
gramming. In: Proceedings of TRICS: Techniques foR Implementing Constraint
programming Systems, a post-conference workshop of CP 2000,. pp. 118–133 (2000)

18. Kallehauge, B., Boland, N., Madsen, O.B.G.: Path inequalities for the vehicle
routing problem with time windows. Networks 49(4), 273–293 (2007)

19. Kilby, P., Prosser, P., Shaw, P.: A comparison of traditional and constraint-based
heuristic methods on vehicle routing problems with side constraints. Constraints
5(4), 389–414 (2000)

20. Lam, E., Van Hentenryck, P.: A branch-and-price-and-check model for the vehicle
routing problem with location congestion. Constraints 21(3), 394–412 (2016)

21. Lysgaard, J., Letchford, A.N., Eglese, R.W.: A new branch-and-cut algorithm
for the capacitated vehicle routing problem. Mathematical Programming 100(2),
423–445 – 0025–5610 (2004)

22. Mak, V.: On the Asymmetric Travelling Salesman Problem with Replenishment
Arcs. Ph.D. thesis, University of Melbourne (2001)

23. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering
an efficient SAT solver. In: Proceedings of the 38th annual Design Automation
Conference. pp. 530–535. ACM (2001)

24. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357–391 (2009)

25. Pecin, D., Pessoa, A., Poggi, M., Uchoa, E.: Improved Branch-Cut-and-Price for
Capacitated Vehicle Routing, pp. 393–403. Springer International Publishing (2014)

26. Ropke, S., Cordeau, J.F.: Branch and cut and price for the pickup and delivery
problem with time windows. Transportation Science 43(3), 267–286 (2009)

27. Rousseau, L.M., Gendreau, M., Pesant, G.: Using constraint-based operators to
solve the vehicle routing problem with time windows. Journal of Heuristics 8(1),
43–58 (2002)

28. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M., Puget, J.F. (eds.) Principles and Practice of
Constraint Programming — CP98, Lecture Notes in Computer Science, vol. 1520,
pp. 417–431. Springer Berlin Heidelberg (1998)

29. Thorsteinsson, E.: Branch-and-check: A hybrid framework integrating mixed integer
programming and constraint logic programming. In: Walsh, T. (ed.) Principles
and Practice of Constraint Programming — CP 2001, Lecture Notes in Computer
Science, vol. 2239, pp. 16–30. Springer Berlin Heidelberg (2001)

30. Tran, T.T., Araujo, A., Beck, J.C.: Decomposition methods for the parallel machine
scheduling problem with setups. INFORMS Journal on Computing 28(1), 83–95
(2016)

31. Vigo, D., Toth, P.: Vehicle Routing: Problems, Methods, and Applications, Second
Edition. Society for Industrial and Applied Mathematics (2014)

SAT-Encodings for Special Treewidth and Pathwidth

Neha Lodha, Sebastian Ordyniak, and Stefan Szeider

Algorithms and Complexity Group, TU Wien, Vienna, Austria
[neha,ordyniak,sz]@ac.tuwien.ac.at

Abstract. Decomposition width parameters such as treewidth provide a mea-
surement on the complexity of a graph. Finding a decomposition of smallest
width is itself NP-hard but lends itself to a SAT-based solution. Previous work
on treewidth, branchwidth and clique-width indicates that identifying a suitable
characterization of the considered decomposition method is key for a practically
feasible SAT-encoding.
In this paper we study SAT-encodings for the decomposition width parameters
special treewidth and pathwidth. In both cases we develop SAT-encodings based
on two different characterizations. In particular, we develop a new characteriza-
tion for special treewidth based on elimination orderings. We compare the SAT-
encodings based on the considered characterizations empirically.

Author list

– Neha Lodha - Student
– Sebastian Ordyniak - Co -author
– Stefan Szeider - Advisor

SAT-Based Local Improvement for Finding
Tree Decompositions of Small Width

Johannes Fichte, Neha Lodha, and Stefan Szeider

TU Wien, Vienna, Austria

Abstract. Many hard problems can be solved efficiently if the problem instance
can be decomposed by means of a tree decomposition of small width. In par-
ticular for problems beyond NP (such as #P-complete counting problems) tree
decomposition-based methods are widely used. However, finding an optimal tree
decomposition is itself an NP-hard problem. Existing methods for finding tree
decompositions of small width either (a) yield optimal tree decompositions but
are applicable only to small instances (e.g., via SAT-encodings) or (b) are based
on greedy heuristics which often yield tree decompositions that are far from opti-
mal. In this paper, we propose a new method that combines (a) and (b), where a
heuristically obtained tree decomposition is improved locally by means of a SAT
encoding. We provide an experimental evaluation of our new method.

Author list

– Johannes Fichte - Co-author
– Neha Lodha - Student
– Stefan Szeider - Advisor

Introducing Pareto Minimal Correction Subsets

Miguel Terra-Neves (student), Inês Lynce (advisor), and Vasco Manquinho
(advisor)

INESC-ID / Instituto Superior Técnico, Universidade de Lisboa, Portugal
{neves,ines,vmm}@sat.inesc-id.pt

Abstract. A Minimal Correction Subset (MCS) of an unsatis�able con-
straint set is a minimal subset of constraints that, if removed, makes the
constraint set satis�able. MCSs enjoy a wide range of applications, one of
them being approximate solutions to constrained optimization problems.
However, existing work on applying MCS enumeration to optimization
problems focuses on the single-objective case.
In this work, a �rst de�nition of Pareto Minimal Correction Subsets
(Pareto-MCSs) is proposed with the goal of approximating the Pareto-
optimal solution set of multi-objective constrained optimization prob-
lems. We formalize and prove an equivalence relationship between Pareto-
optimal solutions and Pareto-MCSs. Moreover, Pareto-MCSs and MCSs
can be connected in such a way that existing state-of-the-art MCS enu-
meration algorithms can be used to enumerate Pareto-MCSs.
An experimental evaluation considers the multi-objective virtual machine
consolidation problem. Results show that the proposed Pareto-MCS ap-
proach outperforms the state-of-the-art approaches.

Preference Elicitation for DCOPs

Atena M. Tabakhi1, Tiep Le2, Ferdinando Fioretto3, and William Yeoh1

1 Department of Computer Science and Engineering, Washington University in St. Louis
{amtabakhi,wyeoh}@wustl.edu

2 Department of Computer Science, New Mexico State University
tile@cs.nmsu.edu

3 Department of Industrial and Operations Engineering, University of Michigan
fioretto@umich.edu

Abstract. Distributed Constraint Optimization Problems (DCOPs) offer a pow-
erful approach for the description and resolution of cooperative multi-agent prob-
lems. In this model, a group of agents coordinate their actions to optimize a global
objective function, taking into account their preferences or constraints. A core
limitation of this model is the assumption that the preferences of all agents or the
costs of all constraints are specified a priori. Unfortunately, this assumption does
not hold in a number of application domains where preferences or constraints
must be elicited from the users. One of such domains is the Smart Home Device
Scheduling (SHDS) problem. Motivated by this limitation, we make the follow-
ing contributions in this paper: (1) We propose a general model for preference
elicitation in DCOPs; (2) We propose several heuristics to elicit preferences in
DCOPs; and (3) We empirically evaluate the effect of these heuristics on random
binary DCOPs as well as SHDS problems.

Keywords: Distributed Constraint Optimization, Smart Homes, Preference Elic-
itation

Under consideration for publication in Theory and Practice of Logic Programming 1

Computing LPMLN Using ASP and MLN Solvers
(System Paper)

Joohyung Lee (Advisor), Samidh Talsania (Co-author), and Yi Wang (Student)
School of Computing, Informatics, and Decision Systems Engineering

Arizona State University, Tempe, USA
(e-mail: {joolee, stalsani, ywang485}@asu.edu)

submitted ; revised ; accepted

Abstract

LPMLN is a recent addition to probabilistic logic programming languages. Its main idea is to overcome the
rigid nature of the stable model semantics by assigning a weight to each rule in a way similar to Markov Logic
is defined. We present two implementations of LPMLN, LPMLN2ASP and LPMLN2MLN. System LPMLN2ASP

translates LPMLN programs into the input language of answer set solver CLINGO, and using weak constraints
and stable model enumeration, it can compute most probable stable models as well as exact conditional and
marginal probabilities. System LPMLN2MLN translates LPMLN programs into the input language of Markov
Logic solvers, such as ALCHEMY, TUFFY, and ROCKIT, and allows for performing approximate probabilistic
inference on LPMLN programs. We also demonstrate the usefulness of the LPMLN systems for computing
other languages, such as ProbLog and Pearl’s Causal Models, that are shown to be translatable into LPMLN.

This paper is under review for the second round.

An Efficient SMT Approach to Solve
MRCPSP/max Instances with Tight Constraints

on Resources

Miquel Bofill, Jordi Coll, Josep Suy, and Mateu Villaret

University of Girona, Spain
{miquel.bofill,jordi.coll,josep.suy,mateu.villaret}@imae.udg.edu

Abstract. The Multi-Mode Resource-Constrained Project Scheduling
Problem with Minimum and Maximum Time Lags (MRCPSP/max) is a
generalization of the well known Resource-Constrained Project Schedul-
ing Problem. Recently, it has been shown that the benchmark datasets
typically used in the literature can be easily solved by relaxing some
resource constraints, which in many cases are dummy. In this work we
propose new datasets with tighter resource limitations. We tackle them
with an SMT encoding, where resource constraints are expressed as spe-
cialized pseudo-Boolean constraints and then translated into SAT. We
provide empirical evidence that this approach is state-of-the-art for in-
stances highly constrained by resources.

Combining Stochastic Constraint Optimization
and Probabilistic Programming

From Knowledge Compilation to Constraint Solving

Anna L.D. Latour1, Behrouz Babaki2, Anton Dries2, Angelika Kimmig2,
Guy Van den Broeck3, and Siegfried Nijssen4

1 LIACS, Leiden University?, Leiden, The Netherlands
a.l.d.latour@liacs.leidenuniv.nl

2 Department of Computer Science, KU Leuven, Leuven, Belgium
3 Computer Science Department, UCLA, Los Angeles, USA

4 ICTEAM, Université catholique de Louvain, Louvain-la-Neuve, Belgium
siegfried.nijssen@uclouvain.be

Abstract. We show that a number of problems in Artificial Intelligence
can be seen as Stochastic Constraint Optimization Problems (SCOPs):
problems that have both a stochastic and a constraint optimization com-
ponent. We argue that these problems can be modeled in a new language,
SC-ProbLog, that combines a generic Probabilistic Logic Programming
(PLP) language, ProbLog, with stochastic constraint optimization. We
propose a toolchain for effectively solving these SC-ProbLog programs,
which consists of two stages. In the first stage, decision diagrams are com-
piled for the underlying distributions. These diagrams are converted into
models that are solved using Mixed Integer Programming or Constraint
Programming solvers in the second stage. We show that, to yield linear
constraints, decision diagrams need to be compiled in a specific form.
We introduce a new method for compiling small Sentential Decision Di-
agrams in this form. We evaluate the effectiveness of several variations
of this toolchain on test cases in viral marketing and bioinformatics.

Acknowledgements. We thank Luc De Raedt for his support, for his advice
and for the numerous other ways in which he contributed to this work. This
research was supported by the Netherlands Organisation for Scientific Research
(NWO) and NSF grant #IIS-1657613.

? The inspiration for this work came during a research visit to the Computer Science
Department of KU Leuven. The work itself was done during a research visit to the
ICTEAM institute of Université catholique de Louvain.

Constraint Handling in Flight Planning

Anders N. Knudsen (student), Marco Chiarandini, and Kim S. Larsen

Department of Mathematics and Computer Science
University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

{andersnk,marco,kslarsen}@imada.sdu.dk

Abstract. Flight routes are paths in a network, whose nodes repre-
sent waypoints in a 3D space. A common approach to route planning
is first to calculate a cheapest path in a 2D space, and then to opti-
mize the flight cost in the third dimension. We focus on the problem of
finding a cheapest path through a network describing the 2D projection
of the 3D waypoints. In European airspaces, traffic flow is handled by
heavily constraining the flight network. The constraints can have very
diverse structures, among them a generalization of the forbidden pairs
type. They invalidate the FIFO property, commonly assumed in short-
est path problems. We formalize the problem and provide a framework
for the description, representation and propagation of the constraints in
path finding algorithms, best-first and A∗ search. In addition, we study
a lazy approach to deal with the constraints. We conduct an experimen-
tal evaluation based on real-life data and conclude that our techniques
for constraint propagation work best together with an iterative search
approach, in which only constraints that are violated in previously found
routes are introduced in the constraint set before the search is restarted.

Treewidth in Non-Ground Answer Set Solving
and Alliance Problems in Graphs

Bernhard Bliem (student) and Stefan Woltran (thesis advisor)

Institute of Information Systems 184/2
TU Wien

Favoritenstrasse 9–11, 1040 Vienna, Austria
[bliem,woltran]@dbai.tuwien.ac.at

Abstract. To solve hard problems efficiently via answer set program-
ming (ASP), a promising approach is to take advantage of the fact that
real-world instances of many hard problems exhibit small treewidth. Al-
gorithms that exploit this have already been proposed – however, they
suffer from an enormous overhead. In the thesis, we present improve-
ments in the algorithmic methodology for leveraging bounded treewidth
that are especially targeted toward problems involving subset minimiza-
tion. This can be useful for many problems at the second level of the
polynomial hierarchy like solving disjunctive ground ASP. Moreover, we
define classes of non-ground ASP programs such that grounding such a
program together with input facts does not lead to an excessive increase
in treewidth of the resulting ground program when compared to the
treewidth of the input. This allows ASP users to take advantage of the
fact that state-of-the-art ASP solvers perform better on ground programs
of small treewidth. Finally, we resolve several open questions on the
complexity of alliance problems in graphs. In particular, we settle the
long-standing open questions of the complexity of the Secure Set problem
and whether the Defensive Alliance problem is fixed-parameter tractable
when parameterized by treewidth.

Keywords: answer set programming, treewidth, secure set, defensive
alliance, parameterized complexity

1 Introduction

The problem solving paradigm Answer Set Programming (ASP) [12, 31, 47, 46]
has become quite popular for tackling computationally hard problems. It offers its
users a very convenient declarative language that allows for succinct specifications,
and there are highly efficient systems available [33, 32, 30, 2, 3, 45, 4, 52, 24].

Although ASP systems have made huge advances in performance, they still
struggle with several tough problems. This is not always just an issue of computa-
tional complexity in the classical sense. Interestingly, ASP systems may perform
quite well in practice on one problem whereas the performance on another prob-
lem of the same complexity can be significantly worse. Often classical complexity
theory is thus only of limited help to explain ASP solving performance in practice.

In such cases, it may be insightful to consider the parameterized complexity of the
problems [21, 29, 18, 49]. This theoretical framework investigates the complexity
of a problem not only in terms of the input size, but also of other parameters.

In this work, we are particularly interested in the effect of the structural
parameter treewidth [51] on the performance of ASP solvers. Intuitively, the
smaller the treewidth of a graph, the closer the graph resembles a tree. It is well
known that many graph problems become easy if we restrict the input to trees and
it has turned out that for many important problems this even holds for the more
general class of instances of bounded treewidth [5]. Luckily, it has been observed
that real-world instances usually exhibit small treewidth [10, 53, 42]. Treewidth
is not only relevant for graph problems. It can also be applied to instances of
all kinds of problems by choosing a suitable representation of the instance as a
graph. For instance, treewidth has also been considered for constraint satisfaction
problems [20], where it is known under the name of “induced width” and is
crucial for the performance of a technique called bucket elimination [19].

There have already been some investigations concerning treewidth and ground
ASP (i.e., ASP programs without variables, also known as propositional programs)
[35, 50, 27]. An important result is the algorithm from [40] for deciding whether
a ground ASP program has a solution in linear time on instances of bounded
treewidth. This algorithm employs a technique called dynamic programming on
tree decompositions, which is very common for algorithms that exploit small
treewidth. The algorithm from [40] has also been implemented and proposed as
an alternative solver for ground ASP [48]. For certain problems, this dynamic-
programming-based solver was able to outperform state-of-the-art solvers if the
instances had a very small treewidth and very large size.

Although the encouraging results from [48] confirmed that small treewidth can
be successfully exploited for ASP solving in experimental settings, the restrictions
on problems and instances that make this approach perform well were still too
severe for most practical applications. The main obstacles that prevented this
approach from being useful for a broad range of applications were the facts that,
on the one hand, the naive dynamic programming approach involves an enormous
overhead (especially in terms of memory) and, on the other hand, state-of-the-art
ASP solvers often perform so well that the theoretical superiority of the dynamic
programming algorithm only pays off for instances of tremendous size. In fact,
experiments in [7] indicated that state-of-the-art ASP solvers are “sensitive” to
the treewidth of their input in the sense that smaller treewidth strongly correlates
with higher solving performance.

These issues hint at interesting research challenges. In particular, two ap-
proaches seem promising for successfully exploiting small treewidth for ASP
solving in practice:

– The first research challenge is to improve the dynamic-programming-based
methodology in order to reduce its overhead and redundant computations.
For solving ground ASP, these issues are especially severe compared to other
problems because the corresponding computational problems are even harder
than NP under standard complexity-theoretic assumptions. (In fact, deciding

whether a ground ASP program with disjunctions has an answer set is ΣP
2 -

complete.) This high complexity of ground ASP is mirrored in the dynamic
programming algorithm [40], which uses brute force to first of all find all
models of all parts of the decomposed program, and it subsequently uses brute
force again for each such partial model to find all potential counterexamples
that may cause the candidate to be discarded.

This pattern also frequently occurs in dynamic programming algorithms
for other problems that search for solutions satisfying some form of subset
minimality. Besides ground ASP, this is the case, for instance, for the problem
of finding subset-minimal models of a propositional formula. In general, prob-
lems involving subset-minimization are quite common in AI, and dynamic
programming algorithms have been proposed for, e.g., circumscription, ab-
duction or abstract argumentation (see [39, 36, 22]). Such algorithms typically
store a great number of redundant objects because the subsets that may
invalidate a solution candidate are themselves solution candidates. Moreover,
the specifications of such algorithms themselves contain redundancies because
the potential counterexamples are usually manipulated in almost the same
way as the solution candidates.

– The second research challenge is to solve ASP by not doing dynamic pro-
gramming at all but instead exploiting small treewidth implicitly by relying
on the assumption that state-of-the-art solvers perform better when given
ground programs of small treewidth (as indicated by the experiments in [7]).

Since problems are usually encoded in non-ground ASP, here the objective is
to investigate which non-ground encoding techniques significantly blow up
the treewidth of the grounding compared to the treewidth of the input.

In addition to leveraging treewidth for ASP solving, we are interested in
several variants of a graph problem called Secure Set [13]. It belongs to the
class of so-called alliance problems [43, 25, 54], which are problems that ask for
groups of vertices that help each other out in a certain way. Practical applications
of alliance problems include finding groups of websites that form communities [28]
or distributing resources in a computer network in such a way that simultaneous
requests can be satisfied [37]. Intuitively, a set S of vertices in a graph is secure
if every subset of S has as least as many neighbors in S as neighbors not in S.
The Secure Set problem asks whether a given graph contains a secure set at
most of a certain size.

The reason why we are concerned with Secure Set is that this problem has
quite interesting properties, especially for ASP researchers: Attempts of encoding
this problem in ASP have resulted in very involved specifications indicating that
Secure Set may require the full expressive power of ASP [1]. However, it is
unfortunately unclear whether this is really necessary because its complexity has
still remained unresolved although the problem has been introduced already in
2007 [13].

One of the variants of Secure Set that we consider in the proposed thesis
is the Defensive Alliance problem [43, 44]. This problem has received quite

some attention in the literature [25]. It is known to be NP-complete, but its
complexity when parameterized by treewidth has remained open.

2 Background

We assume some familiarity with ASP; introductions can be found in [12, 31, 47,
46]. In the thesis, we study both ground ASP programs, i.e., programs without
variables, but also programs utilizing the full language described in the ASP-Core-
2 specification [14]. In particular, we include weak constraints and aggregates.

To solve a non-ground ASP program, ASP systems usually first invoke a
grounder that transforms a program into a set of ground rules. The answer sets
of the original program are the stable models (as defined in [34]) of the resulting
ground program.

A “naive” grounder blindly instantiates variables by all possible ground terms.
Grounders in practice, on the other hand, employ sophisticated techniques in order
to keep the resulting ground program as small as possible. As these techniques
differ between systems, we define a simplified notion of grounding that is easier
to study. For a meaningful investigation of the relationship between the treewidth
of the input and the treewidth of the grounding, we need to assume that the
grounder performs some basic simplifications. These simplifications are so basic
that they can be assumed to be implemented by all reasonable grounders. The
intuition is that a rule from the “naive” grounding is omitted in our grounding
whenever its positive body contains an atom that cannot possibly be derived.

Definition 1. Let Π be a non-ground ASP program, let Π+ denote the positive
program obtained from Π by removing all negated atoms and replacing disjunctions
with conjunctions (i.e., splitting disjunctive into normal rules), and let M+ be
the unique minimal model of Π+. The grounding of Π, denoted by gr(Π), is
such that, for every substitution s from variables to constants, s(r) ∈ gr(Π) iff
s(B+(r)) ⊆M+.

In our work, we are interested in the treewidth of ground ASP programs. For
this, we represent programs as graphs as follows.

Definition 2. The primal graph of a ground ASP program Π is an undirected
graph whose vertices are the atoms in Π and there is an edge between two atoms
if they appear together in a rule in Π. The treewidth of a ground ASP program
Π is the treewidth of its primal graph.

Deciding whether a disjunctive ground ASP program has a stable model is
ΣP

2 -complete in general [23], and it can be done in linear time for ground programs
of bounded treewidth [35]. Treewidth is an important parameter studied in the
context of parameterized complexity theory. Here, decision problems consist not
only of an instance and a yes-no question, but additionally of a parameter of
the instance. For introductions, we refer to [21, 29, 18, 49]. The central notion of
tractability is called fixed-parameter tractability.

Definition 3. A problem is fixed-parameter tractable (FPT) w.r.t. a parameter
k of the instances if it admits an algorithm that runs in time O(f(k) · nc), where
f is an arbitrary computable function that only depends on k, n is the input size
and c is an arbitrary constant. We call such an algorithm an FPT algorithm.

Note that the factor f(k) in this running time may be exponential in the
parameter k, but if k is bounded by a constant, then the algorithm runs in
polynomial time. Importantly, the degree c of the polynomial must be a constant
and may not depend on the parameter, otherwise the algorithm is not FPT.

Dynamic programming on tree decompositions is perhaps the most common
technique for obtaining FPT algorithms when the parameter is treewidth. It
is employed in the algorithm for solving ground ASP in [40], for instance. The
basic idea is the following: Given a graph G, a tree decomposition of G is a tree
whose nodes correspond to subgraphs of G according to certain conditions. If
the treewidth of a graph is bounded by a constant, then we can find (in linear
time) a tree decomposition whose nodes correspond to subgraphs of constant
size [11]. We can then solve many problems by first applying brute force at each
subgraph in order to solve a subproblem corresponding to this subgraph and
then trying to combine the obtained partial solutions. Due to the bound on the
treewidth, we can afford this brute force approach because each of the considered
subgraphs has bounded size. Formal definitions and examples of this technique
can be found in, e.g., [49].

3 Contributions

Our contributions can be arranged in three groups: First, we present improvements
in the dynamic programming methodology; second, we define non-ground ASP
classes that can be shown to preserve bounded treewidth of the input in grounding;
third, we provide complexity results and algorithms for alliance problems in
graphs.

3.1 Improvements in the Dynamic Programming Methodology

We present an improved dynamic programming methodology for problems that
involve subset minimization. Specifically, for any problem P whose solutions are
exactly the subset-minimal solutions of some base problem B, we formalize how
a dynamic programming algorithm for B can automatically be transformed into
a dynamic programming algorithm for P . We prove that the resulting algorithm
runs in linear time on instances of bounded treewidth if the base algorithm
does. Moreover, we prove that it is correct if the base algorithm is correct and,
intuitively, it only computes partial solutions that do not “revoke decisions”
made by associated partial solutions further down in the tree decomposition.
The resulting algorithm has two advantages compared to solving P directly in a
naive way: first, it is usually easier to specify because we only need to design an
algorithm for the base problem and need not care about subset minimization;
second, it is potentially more efficient because it stores fewer redundant items.

Indeed, this methodology has been empirically shown to lead to significant
performance benefits for several problems [6]. An improved version of the classical
dynamic programming algorithm for ground ASP has been implemented using
these ideas [26] and proved to be significantly more efficient than the algorithm
from [40]. Our result formalizes the common scheme that underlies these algo-
rithms. We thus provide a formal framework that makes it possible to transfer
the mentioned optimizations easily to other problems. Thereby we make the
impressive performance benefits that have been reported in [6, 26] accessible to
algorithm designers working on related problems. This is primarily useful for
problems on the second level of the polynomial hierarchy as subset minimization
is a recurring theme in many such problems.

3.2 Non-Ground ASP Classes that Preserve Bounded Treewidth

We define non-ground ASP classes for which grounding, according to Definition 1,
preserves bounded treewidth of the input. By restricting the syntax, we define two
classes of programs called guarded and connection-guarded programs [7]. Guarded
programs guarantee that the treewidth of any fixed program after grounding
stays small whenever input has small treewidth. We formally prove this property
and show that, despite their restrictions, guarded programs can still express
problems that are complete for the second level of the polynomial hierarchy.

Connection-guarded programs are even more expressive than guarded pro-
grams. We show that the treewidth of any fixed connection-guarded program
after grounding is small whenever the treewidth and the maximum degree of (a
graph representation of) the input facts is small.

These results bring us closer to the goal of implicitly taking advantage of the
apparent sensitivity to treewidth of modern ASP solvers because they give us
insight into what happens to the treewidth of the input during grounding. Thus,
by writing a program in guarded ASP, we can be sure that the grounder does not
destroy the property of bounded treewidth. In the case of connection-guarded
ASP, the same holds for the combination of treewidth and maximum degree.

In the thesis, we also present a complexity analysis of computational problems
corresponding to these classes when the parameter is the treewidth of the input,
the maximum degree of the input, or the combination of both. The results of this
analysis show that, for any fixed guarded ASP program, answer set solving is
FPT when parameterized by the treewidth of the input; moreover, for any fixed
connection-guarded ASP program, answer set solving is FPT when parameterized
by the combination of treewidth and maximum degree. This is not obvious
because our ASP classes support weak constraints and aggregates, which are
not accounted for in the FPT algorithms [40, 26] for ground ASP. Furthermore,
we prove hardness results showing that for connection-guarded ASP programs
both the treewidth and the maximum degree must be bounded for obtaining
fixed-parameter tractability. We do this by presenting a connection-guarded ASP
encoding of a problem that is NP-hard even if the treewidth of the instances is
fixed and by presenting a guarded encoding of a problem that is ΣP

2 -hard even if
the degree of the instances is fixed.

As a side-product of these investigations, we obtain metatheorems for proving
FPT results. That is, we can prove that a problem is FPT when parameterized
by treewidth by simply expressing the problem in guarded ASP. We compare this
metatheorem to the common approach of proving fixed-parameter tractability by
expressing a problem in monadic second-order logic and invoking the well-known
theorem by Courcelle [16, 17]. Similarly, we can prove that a problem is FPT
when parameterized by the combination of treewidth and maximum degree by
expressing the problem in connection-guarded ASP. This result is appealing
because we are not aware of any metatheorems that allow us to obtain FPT
results for the combination of treewidth and degree as the parameter.

3.3 Alliance Problems in Graphs

We perform a complexity analysis of alliance problems in graphs, both in the
classical setting and when parameterized by treewidth. First, we settle the
complexity of Secure Set by proving that the problem, along with several
variants, is ΣP

2 -complete (and thus at the second level of the polynomial hierarchy).
Next we turn to the complexity of Secure Set and Defensive Alliance

when the problems are parameterized by treewidth. We illustrate the use of
our ASP classes as FPT classification tools by presenting simple encodings for
alliance problems in graphs. By encoding the NP-complete Defensive Alliance
problem in connection-guarded ASP, we easily obtain the already known result
that the problem is FPT when parameterized by the combination of treewidth
and maximum degree. More importantly, we obtain the new result that the
co-NP-complete problem of deciding whether a given set is secure in a graph is
FPT for the parameter treewidth by encoding the problem in guarded ASP.

We also give several negative results. We prove that both Defensive Al-
liance and Secure Set, as well as several problem variants, are not FPT
when parameterized by treewidth (under commonly held complexity-theoretic
assumptions). These questions have been open since the problems have been
introduced in 2002 and 2007, respectively. They have explicitly been stated as
open problems in [41] (for Defensive Alliance) and in [38] (for Secure Set).

Despite the parameterized hardness of Secure Set, we can give at least
a slightly positive result: We show that the Secure Set problem can still be
solved in polynomial time for instances of bounded treewidth although the degree
of the polynomial depends on the treewidth.

4 Current Status

The largest part of the research for the proposed thesis has already been done
and is in the process of being integrated and written down. Most of the results
have been published in conference proceedings and journals:

The work on improving the dynamic programming methodology for problems
involving subset minimization has been published in [6]. The class of connection-
guarded ASP programs, which preserves bounded treewidth of the input in

grounding whenever the maximum degree is also bounded has been published in
[7]. That paper neither contained the thorough complexity analysis performed
in the proposed thesis nor the work on the class of guarded programs, which
may be attractive because this class does not require the degree of input graphs
to be bounded. The ΣP

2 -completeness result of the Secure Set problem has
been published in [9]. An extended version [8], which is currently under review
for a journal, additionally contains the parameterized complexity results. The
proposed thesis extends this by results on the parameterized complexity of the
Defensive Alliance problem as well.

5 Open Issues

The class of connection-guarded ASP programs may be of interest for algorithmic
purposes because it allows us to classify a problem as FPT when parameterized by
treewidth plus degree. A common technique for classifying problems parameterized
by treewidth as FPT is expressing them in monadic second-order logic (MSO).
Our result may lead to an extension of MSO that can be used for classifying
problems as FPT when the parameter is treewidth + degree.

From a more practical perspective, it is promising to look closely into what
ASP solvers and in particular their heuristics are doing when they are presented
with a grounding of small treewidth. This could provide us insight into why state-
of-the-art ASP solvers perform better on instances of small treewidth even though
they do not “consciously” exploit this fact. With the gained understanding, we
may be able to improve their performance by explicitly taking information from
a tree decomposition into account during solving. This could perhaps lead to a
hybrid ASP solving approach that uses classical conflict-driven clause learning in
combination with techniques based on tree decompositions.

We showed that Secure Set is not FPT when parameterized by treewidth
(unless the class W[1] is equal to FPT). It would be interesting to study which
additional restrictions beside bounded treewidth need to be imposed on Secure
Set instances to achieve fixed-parameter tractability. In particular, we do not
know whether it becomes FPT when additionally the degree is bounded.

Regarding our polynomial-time algorithm for Secure Set on instances of
bounded treewidth, it would be interesting to study if this result can be extended
to instances of bounded clique-width, a parameter related to treewidth.

Moreover, we have not considered a problem that is closely related to Defen-
sive Alliance, namely Offensive Alliance. Possibly some of our techniques
can also be applied to obtain complexity results for this problem.

Defensive Alliance differs from Secure Set in the size of the subsets
of solution candidates that need to be checked. For future work it would be
interesting to study the complexity of a problem that generalizes both of them,
where the size of the subsets is a parameter.

Finally, for the parameterized hardness results that we obtained we do not
have corresponding membership results. This is an obvious task for future work.

References

1. Michael Abseher, Bernhard Bliem, Günther Charwat, Frederico Dusberger, and
Stefan Woltran. Computing secure sets in graphs using answer set programming.
J. Logic Comput., 2015. Accepted for publication.

2. Mario Alviano, Carmine Dodaro, Wolfgang Faber, Nicola Leone, and Francesco
Ricca. WASP: A native ASP solver based on constraint learning. In Pedro Cabalar
and Tran Cao Son, editors, Proceedings of LPNMR 2013, volume 8148 of LNCS,
pages 54–66. Springer, 2013.

3. Mario Alviano, Carmine Dodaro, Nicola Leone, and Francesco Ricca. Advances in
WASP. In Calimeri et al. [15], pages 40–54.

4. Mario Alviano, Wolfgang Faber, Nicola Leone, Simona Perri, Gerald Pfeifer, and
Giorgio Terracina. The disjunctive datalog system DLV. In Oege de Moor, Georg
Gottlob, Tim Furche, and Andrew Jon Sellers, editors, Revised Selected Papers of
Datalog 2010, volume 6702 of LNCS, pages 282–301. Springer, 2011.

5. Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-
decomposable graphs. Journal of Algorithms, 12(2):308–340, 1991.

6. Bernhard Bliem, Günther Charwat, Markus Hecher, and Stefan Woltran. D-FLATˆ2:
Subset minimization in dynamic programming on tree decompositions made easy.
Fund. Inform., 147(1):27–61, 2016.

7. Bernhard Bliem, Marius Moldovan, Michael Morak, and Stefan Woltran. The
impact of treewidth on ASP grounding and solving. In Carles Sierra and Fahiem
Bacchus, editors, Proceedings of IJCAI 2017. The AAAI Press, 2017. Accepted for
publication.

8. Bernhard Bliem and Stefan Woltran. Complexity of secure sets. CoRR,
abs/1411.6549, 2014. Updated to version 3 on July 11, 2017.

9. Bernhard Bliem and Stefan Woltran. Complexity of secure sets. In Ernst W. Mayr,
editor, Revised Papers of WG 2015, volume 9224 of LNCS, pages 64–77. Springer,
2016.

10. Hans L. Bodlaender. A tourist guide through treewidth. Acta Cybernet., 11(1-2):1–
21, 1993.

11. Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of
small treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.

12. Gerhard Brewka, Thomas Eiter, and Miros law Truszczyński. Answer set program-
ming at a glance. Communications of the ACM, 54(12):92–103, 2011.

13. Robert C. Brigham, Ronald D. Dutton, and Stephen T. Hedetniemi. Security in
graphs. Discrete Appl. Math., 155(13):1708–1714, 2007.

14. Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista
Ianni, Roland Kaminski, Thomas Krennwallner, Nicola Leone, Francesco
Ricca, and Torsten Schaub. ASP-Core-2 input language format.
https://www.mat.unical.it/aspcomp2013/ASPStandardization, 2015. Version:
2.03c.

15. Francesco Calimeri, Giovambattista Ianni, and Miros law Truszczyński, editors.
Proceedings of LPNMR 2015, volume 9345 of LNCS. Springer, 2015.

16. Bruno Courcelle. The monadic second-order logic of graphs I: Recognizable sets of
finite graphs. Inform. and Comput., 85(1):12–75, 1990.

17. Bruno Courcelle. The monadic second-order logic of graphs III: Tree-decompositions,
minors and complexity issues. RAIRO Theor. Inform. Appl., 26:257–286, 1992.

18. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Micha l Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer International Publishing, Cham, Switzerland, 2015.

19. Rina Dechter. Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence, 113(1-2):41–85, 1999.

20. Rina Dechter. Constraint Processing. Elsevier Morgan Kaufmann, Amsterdam,
The Netherlands, 2003.

21. Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs
in Computer Science. Springer, New York, NY, USA, 1999.

22. Wolfgang Dvořák, Reinhard Pichler, and Stefan Woltran. Towards fixed-parameter
tractable algorithms for abstract argumentation. Artificial Intelligence, 186:1–37,
2012.

23. Thomas Eiter and Georg Gottlob. On the computational cost of disjunctive logic
programming: Propositional case. Ann. Math. Artif. Intell., 15(3-4):289–323, 1995.

24. Islam Elkabani, Enrico Pontelli, and Tran Cao Son. SmodelsA - A system for
computing answer sets of logic programs with aggregates. In Chitta Baral, Gianluigi
Greco, Nicola Leone, and Giorgio Terracina, editors, Proceedings of LPNMR 2005,
volume 3662 of LNCS, pages 427–431. Springer, 2005.

25. Henning Fernau and Juan A. Rodŕıguez-Velázquez. A survey on alliances and related
parameters in graphs. Electron. J. Graph Theory Appl. (EJGTA), 2(1):70–86, 2014.

26. Johannes Klaus Fichte, Markus Hecher, Michael Morak, and Stefan Woltran. Answer
set solving with bounded treewidth revisited. In Marcello Balduccini and Tomi
Janhunen, editors, Proceedings of LPNMR 2017, volume 10377 of LNCS, pages
132–145. Springer, 2017.

27. Johannes Klaus Fichte and Stefan Szeider. Backdoors to tractable answer set
programming. Artificial Intelligence, 220:64–103, 2015.

28. Gary William Flake, Steve Lawrence, C. Lee Giles, and Frans Coetzee. Self-
organization and identification of web communities. IEEE Computer, 35(3):66–71,
2002.

29. Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theo-
retical Computer Science. Springer, 2006.

30. Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Javier Romero, and Torsten
Schaub. Progress in clasp series 3. In Calimeri et al. [15], pages 368–383.

31. Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. An-
swer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers, Williston, VT, USA, 2012.

32. Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. clasp:
A conflict-driven answer set solver. In Chitta Baral, Gerhard Brewka, and John S.
Schlipf, editors, Proceedings of LPNMR 2007, volume 4483 of LNCS, pages 260–265.
Springer, 2007.

33. Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Conflict-driven answer
set solving: From theory to practice. Artificial Intelligence, 187:52–89, 2012.

34. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic
programming. In Robert A. Kowalski and Kenneth A. Bowen, editors, Proceedings
of JICSLP 1988, volume 2, pages 1070–1080. The MIT Press, 1988.

35. Georg Gottlob, Reinhard Pichler, and Fang Wei. Bounded treewidth as a key
to tractability of knowledge representation and reasoning. Artificial Intelligence,
174(1):105–132, 2010.

36. Georg Gottlob, Reinhard Pichler, and Fang Wei. Tractable database design and
datalog abduction through bounded treewidth. Inf. Syst., 35(3):278–298, 2010.

37. Teresa W. Haynes, Stephen T. Hedetniemi, and Michael A. Henning. Global
defensive alliances in graphs. Electron. J. Combin., 10, 2003.

38. Yiu Yu Ho and Ronald D. Dutton. Rooted secure sets of trees. AKCE Int. J.
Graphs Comb., 6(3):373–392, 2009.

39. Michael Jakl, Reinhard Pichler, Stefan Rümmele, and Stefan Woltran. Fast counting
with bounded treewidth. In Iliano Cervesato, Helmut Veith, and Andrei Voronkov,
editors, Proceedings of LPAR 2008, volume 5330 of LNCS, pages 436–450. Springer,
2008.

40. Michael Jakl, Reinhard Pichler, and Stefan Woltran. Answer-set programming with
bounded treewidth. In Craig Boutilier, editor, Proceedings of IJCAI 2009, pages
816–822. The AAAI Press, 2009.

41. Masashi Kiyomi and Yota Otachi. Alliances in graphs of bounded clique-width.
Discrete Appl. Math., 223:91–97, 2017.

42. András Kornai and Zsolt Tuza. Narrowness, pathwidth, and their application in
natural language processing. Discrete Appl. Math., 36(1):87–92, 1992.

43. Petter Kristiansen, Sandra M. Hedetniemi, and Stephen T. Hedetniemi. Introduction
to alliances in graphs. In Ilyas Cicekli, Nihan Kesim Cicekli, and Erol Gelenbe,
editors, Proceedings of ISCIS 2002, pages 308–312. CRC Press, 2002.

44. Petter Kristiansen, Sandra M. Hedetniemi, and Stephen T. Hedetniemi. Alliances
in graphs. J. Combin. Math. Combin. Comput., 48:157–178, 2004.

45. Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona
Perri, and Francesco Scarcello. The DLV system for knowledge representation and
reasoning. ACM Trans. Comput. Log., 7(3):499–562, 2006.

46. Vladimir Lifschitz. What is answer set programming? In Dieter Fox and Carla P.
Gomes, editors, Proceedings of AAAI 2008), pages 1594–1597. The AAAI Press,
2008.

47. Victor W. Marek and Miros law Truszczyński. Stable models and an alternative
logic programming paradigm. In Krzysztof Apt, Victor W. Marek, Miros law
Truszczyński, and David S. Warren, editors, The Logic Programming Paradigm: A
25-Year Perspective, pages 375–398. Springer, New York, NY, USA, 2011.

48. Michael Morak, Reinhard Pichler, Stefan Rümmele, and Stefan Woltran. A dynamic-
programming based ASP-solver. In Tomi Janhunen and Ilkka Niemelä, editors,
Proceedings of JELIA 2010, volume 6341 of LNCS, pages 369–372. Springer, 2010.

49. Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms, volume 31 of Oxford
Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford,
United Kingdom, 2006.

50. Reinhard Pichler, Stefan Rümmele, Stefan Szeider, and Stefan Woltran. Tractable
answer-set programming with weight constraints: Bounded treewidth is not enough.
Theory Pract. Log. Program., 14(2):141–164, 2014.

51. Neil Robertson and Paul D. Seymour. Graph minors. III. Planar tree-width. J.
Combin. Theory Ser. B, 36(1):49–64, 1984.

52. Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and implementing
the stable model semantics. Artificial Intelligence, 138(1-2):181–234, 2002.

53. Mikkel Thorup. All structured programs have small tree-width and good register
allocation. Inform. and Comput., 142(2):159–181, 1998.

54. Ismael González Yero and Juan A. Rodŕıguez-Velázquez. Defensive alliances in
graphs: A survey. CoRR, abs/1308.2096, 2013.

Search strategies for floating point constraint
systems ?

Heytem Zitoun1??, Claude Michel1? ? ?, Michel Rueher1†, and Laurent Michel2‡

1 Université Côte d’Azur, CNRS, I3S, France
firstname.lastname@i3s.unice.fr

2 University of Connecticut, Storrs, CT 06269-2155
ldm@engr.uconn.edu

Abstract. The ability to verify critical software is a key issue in em-
bedded and cyber physical systems typical of automotive, aeronautics or
aerospace industries. Bounded model checking and constraint program-
ming approaches search for counter-examples that exemplify a property
violation. The search of such counter-examples is a long, tedious and
costly task especially for programs performing floating point computa-
tions. Indeed, available search strategies are dedicated to finite domains
and, to a lesser extent, to continuous domains. In this paper, we intro-
duce new strategies dedicated to floating point constraints. They take
advantage of the properties of floating point domains (e.g., domain den-
sity) and of floating point constraints (e.g., floating point arithmetic)
to improve the search for floating point constraint problems. First ex-
periments on a set of realistic benchmarks show that such dedicated
strategies outperform standard search and splitting strategies.

? This work was partially supported by ANR COVERIF (ANR-15-CE25-0002).
?? Student

? ? ? Advisor
† Advisor
‡ Co-author

Combining Solvers to Solve a Cryptanalytic Problem?

David Gerault1, Pascal Lafourcade1, Marine Minier2, and Christine Solnon3

1 Université Clermont Auvergne, LIMOS, France
2 Université de Lorraine, LORIA, UMR 7503, F-54506, France

3 Université de Lyon, INSA-Lyon, LIRIS, CNRS UMR5205, F-69621, France

Abstract. We describe Constraint Programming models to solve a cryptanalytic
problem: the chosen key differential attack against the standard block cipher AES.
We more particularly show how combining two solvers, namely Picat Sat and
Chuffed, greatly speeds-up the solution process and allows us to solve all in-
stances in less than twelve hours while dedicated cryptanalysis tools need weeks.

1 Introduction

Since 2001, AES (Advanced Encryption Standard) is the encryption standard for block
ciphers [7]. It guarantees communication confidentiality by using a secret key K to
cipher an original plaintext X into a ciphertext AESK(X), in such a way that the
ciphertext can further be deciphered into the original one using the same key, i.e.,
X = AES−1K (AESK(X)). It uses either 128-, 192-, or 256-bit keys. Cryptanalysis
aims at testing whether confidentiality is actually guaranteed. In particular, differential
cryptanalysis [2] evaluates whether it is possible to find the key within a reasonable
number of trials by considering plaintext pairs (X,X ′) and studying the propagation of
the initial difference δX = X⊕X ′ between X and X ′ while going through the cipher-
ing process (where ⊕ is the xor operator). Today, differential cryptanalysis is public
knowledge, and block ciphers such as AES have proven bounds against differential at-
tacks. Hence, [1] proposed a new type of attack called related-key attack that allows an
attacker to also inject differences between the keys K and K ′ (even if the secret key K
remains unknown from the attacker).

To mount related-key attacks, the cryptanalyst must find related-key differentials,
defined as a plaintext difference δX , a key difference δK, and a ciphertext difference
δC. The optimal ones maximize the probability that, for random plaintexts X and key
K, an input difference (δX, δK) leads to the output difference δC, i.e., it holds that
AESK(X)⊕AESK⊕δK(X⊕δX) = δC. Finding the optimal related-key differentials
for AES is a highly combinatorial problem that hardly scales. Two main approaches
have been proposed to solve this problem: a graph traversal approach [8], and a Branch
& Bound approach [4]. The approach of [8] requires about 60 GB of memory when the
key has 128 bits, and it has not been extended to larger keys. The approach of [4] only
takes several megabytes of memory, but it requires several days of computation when
the key has 128 bits, and several weeks when the key has 192 bits.

? This research was conducted with the support of the FEDER program of 2014-2020 and the
region council of Auvergne

2

Operations applied at each round i ∈ [0, r − 1]:
Key K = K0

(4×4 bytes)

KS

SKi[j][3] =
S(Ki[j][3])KS

Subkey Ki+1

XiPlaintext X
(4×4 bytes)

ARK
i = 0

ARK
i = r

i < r

S

SXi = S(Xi)

SR

SR(SXi)

MC

Yi = MC(SR(SXi)) Xr

SB

Ciphertext
SXr = AESK (X)

Fig. 1. AES-128 cipher. Each 4 × 4 array represents a group of 16 bytes. Before the first round,
ARK is applied on X and K to obtain X0. Then, for each round i ∈ [0, r − 1], S is applied on
Xi to obtain SXi, SR and MC are applied on SXi to obtain Yi, KS is applied on Ki to obtain
Ki+1 (and during KS, S is applied on Ki[j][3] to obtain SKi[j][3], ∀j ∈ [0, 3]), and ARK is
applied on Ki+1 and Yi to obtain Xi+1. The ciphertext SXr is obtained by applying SB on Xr .

During the process of designing new ciphers, this search generally needs to be per-
formed several times, so it is desirable that it can be done rather quickly. Another point
that should not be neglected is the time needed to design and implement these ap-
proaches: To ensure that the computation is completed within a “reasonable” amount
of time, it is necessary to reduce the branching by introducing clever reasoning. Of
course, this hard task is also likely to introduce bugs, and checking the correctness or
the optimality of the computed solutions may not be so easy.

In [11], we introduced a first Constraint Programming (CP) model to solve this
problem when the key has 128 bits. In [10], we extended this model to larger keys of
192 and 256 bits, and we improved it by introducing a new way for modeling byte
equivalence classes. We also showed how to speed-up the solution process by com-
bining two solvers: Picat Sat [16] and Chuffed [5]. In this paper, we first describe the
problem in Section 2, and the CP model of [10] in Section 3. In these two sections, we
only consider the case where keys have 128 bits, as this simplifies the presentation. The
extension to the case where keys have 192 or 256 bits is quite straightforward and we
refer the reader to [10] for more details. Then, we study the solver combination more
thoroughly in Section 4.

2 Problem Statement

AES block cipher. AES ciphers blocks of length n = 128 bits, and each block is a 4×4
matrix of bytes. The length of keys is l ∈ {128, 192, 256}. In this section, we only
consider keys of length l = 128, and keys are 4 × 4 matrices of bytes. Given a 4 × 4
matrix of bytes M , we note M [j][k] the byte at row j ∈ [0, 3] and column k ∈ [0, 3].

AES is an iterative process, and we note Xi the ciphertext at the beginning of round
i ∈ [0, r]. Each round is composed of the following operations, as displayed in Fig. 1:

3

– SubBytes (S) is a non-linear permutation which is applied on each byte of Xi

separately, i.e., ∀j, k ∈ [0, 3], Xi[j][k] is replaced by S(Xi[j][k]), according to a
lookup table. We note SXi = S(Xi).

– ShiftRows (SR) is a linear mapping that rotates on the left by 1 byte position
(resp. 2 and 3 byte positions) the second row (resp. third and fourth rows) of SXi.

– MixColumns (MC) is a linear mapping that multiplies each column of SR(SXi)
by a 4× 4 fixed matrix chosen for its good properties of diffusion [6]. In particular,
it has the Maximum Distance Separable (MDS) property: For each column, the
total number of bytes which are different from 0, before and after applying MC, is
either equal to 0 or strictly greater than 4. We note Yi =MC(SR(SXi)).

– KeySchedule (KS) is the operation that generates subkeys. The subkey at round
0 is the initial key, i.e., K0 = K. For each round i ∈ [0, r − 1], the subkey Ki+1

is generated from Ki by applying KS. It first replaces each byte Ki[j][3] of the
last column by S(Ki[j][3]) (where S is the SubBytes operator), and we note
SKi[j][3] = S(Ki[j][3]). Then, each column of Ki+1 is obtained by performing a
xor operation between bytes coming from Ki, SKi, or Ki+1.

– AddRoundKey (ARK) performs a xor between bytes of Yi and subkey Ki+1 to
obtain Xi+1.

The set of all bytes (for all rounds) is denoted Bytes (i.e., Bytes = {X[j][k], Xi[j][k],
SXi[j][k], Yi[j][k],Ki[j][k], SKi[j][3] | i ∈ [0, r], j, k ∈ [0, 3]}). The difference be-
tween two bytes B and B′ is denoted δB (i.e., δB = B ⊕ B′), and the set of all
differential bytes is denoted diffBytes (i.e., diffBytes = {δB | B ∈ Bytes}).

Optimal related-key differentials. Mounting attacks to recover the key K requires find-
ing a related-key differential characteristic, i.e. a plaintext difference δX = X ⊕ X ′
and a key difference δK = K ⊕ K ′, such that δX becomes δSXr after r rounds
with a probability Pr(δX → δSXr) as high as possible. This can be achieved by
tracking the propagation of the initial differences through the cipher using known prop-
agation rules. Once such an optimal differential characteristic is found, the cryptanalyst
asks for the encryption of plaintext pairs (X,X ′) satisfying the input difference (i.e.,
X ⊕ X ′ = δX), with key K for X and key K ′ = K ⊕ δK for δX ′. When this dif-
ference propagates as expected, he can infer informations leading to a recovery of the
secret key K in O(1

Pr(δX→δSXr)
) trials.

The AES operators SR,MC,ARK, and KS are linear, i.e., they propagate differ-
ences in a deterministic way (with probability 1). However, the S operator is not linear:
Given a byte differenceB⊕B′ = δB, the probability that δB becomes S(B)⊕S(B′) =
δSB is Pr(δB → δSB). It is equal to 1 if δB = 0 (i.e.,B = B′). However, if δB 6= 0,
then Pr(δB → δSB) ∈ { 2

256 ,
4

256}.
The probability that δX becomes δSXr is equal to the product of all Pr(δB →

δSB) such that δB (resp. δSB) is a byte difference before (resp. after) passing through
the S operator when ciphering X with K and X ′ with K ′, i.e., the product of all
Pr(δXi[j][k] → δSXi[j][k]) and all Pr(δKi[j][3] → δSKi[j][3]) with i ∈ [0, r]
and j, k ∈ [0, 3]. The goal is to find δX and δK that maximize this probability.

Two step solving process. To find δX and δK, we search for the values of all differential
bytes in diffBytes. Both [4] and [8] propose to solve this problem in two steps. In Step

4

1, a Boolean variable ∆B is associated with every differential byte δB ∈ diffBytes
such that ∆B = 0 ⇔ δB = 0 and ∆B = 1 ⇔ δB ∈ [1, 255]. The goal of Step
1 is to find a Boolean solution that assigns values to Boolean variables such that the
AES transformation rules are satisfied. During this first step, the SubBytes operation
S is not considered. Indeed, it does not introduce nor remove differences. Therefore,
we have ∆Xi[j][k] = ∆SXi[j][k] and ∆Ki[j][3] = ∆SKi[j][3]. As we search for a
solution with maximal probability, the goal of Step 1 is to search for a Boolean solution
which minimizes the number of variables ∆Xi[j][k] and ∆Ki[j][3] which are set to 1.

In Step 2, the Boolean solution is transformed into a byte solution: For each differ-
ential byte δB ∈ diffBytes , if the corresponding Boolean variable ∆B is assigned to
0, then δB is also assigned to 0; otherwise, we search for a byte value in [1, 255] to be
assigned to δB such that the AES transformation rules are satisfied and the probability
is maximized. Note that some Boolean solutions may not be transformable into byte
solutions. These Boolean solutions are said to be byte-inconsistent. In this paper, we
focus on Step 1 which is the most challenging step: the CP model for Step 2 is rather
straightforward when using table constraints, and all instances are efficiently solved by
Choco [15] (see [10] for more details).

3 CP Model

In this section, we briefly describe the CP model used to solve Step 1, and refer the
reader to [11, 10] for more details. We first introduce basic variables and constraints,
that model the AES transformation rules in a straightforward way. Then, we show how
to tighten this model by introducing new variables and constraints that model equality
relations at the byte level.

Variables. For each differential byte δB ∈ diffBytes , we define a Boolean variable∆B
whose domain is D(∆B) = {0, 1}: it is assigned to 0 if δB = 0, and to 1 otherwise.

XOR constraint. As ARK and KS mainly perform XOR operations, we first define
a XOR constraint. Let us consider three differential bytes δA, δB and δC such that
δA ⊕ δB = δC. If δA = δB = 0, then δC = 0. If (δA = 0 and δB 6= 0) or (δA 6= 0
and δB = 0) then δC 6= 0. However, if δA 6= 0 and δB 6= 0, then we cannot know if
δC is equal to 0 or not: This depends on whether δA = δB or not. When abstracting
differential bytes δA, δB and δC with Boolean variables∆A,∆B and∆C (which only
model the fact that there is a difference or not), we obtain the following definition of
the XOR constraint: XOR(∆A,∆B,∆C)⇔ ∆A+∆B +∆C 6= 1.

AddRoundKey and KeySchedule constraints. Both ARK and KS are modeled
with XOR constraints between ∆Xi, ∆Yi, and ∆Ki variables (for ARK), and between
∆Ki and ∆SKi variables (for KS).

ShiftRows and MixColumns. SR simply shifts variables. The MDS property of
MC is ensured by posting a constraint on the sum of some variables of ∆Xi and ∆Yi
variables, which must belong to the set {0, 5, 6, 7, 8}.

5

Objective function. We introduce an integer variable objStep1 that must be minimized,
and we post an equality constraint between objStep1 and the sum of Boolean variables
on which a non linear S operation is performed (all variables ∆Xi[j][k] and ∆Ki[j][3]
with i ∈ [0, r] and j, k ∈ [0, 3]).

Let v be the optimal value of objStep1. It may happen that none of the Boolean solu-
tions with objStep1 = v is byte-consistent, or that the maximal probability p of Boolean
solutions with objStep1 = v is such that it is possible to have a better probability with
a larger value for objStep1 (i.e., p < (4

256)
v+1). In this case, we need to search for new

Boolean solutions, such that objStep1 is minimal while being strictly greater than v.
This is done by adding the constraint objStep1 > v before solving again Step 1.

Limitations. This basic CP model is complete, i.e., for any solution at the byte level (on
δ variables), there exists a solution at the Boolean level (on ∆ variables). However, pre-
liminary experiments have shown us that there is a huge number of Boolean solutions
which are byte inconsistent. For example, when the number of rounds is r = 4, the
optimal cost is objStep1 = 11, and there are more than 90 millions of Boolean solutions
with objStep1 = 11. However, none of these solutions is byte-consistent. In this case,
most of the Step 1 solving time is spent at generating useless Boolean solutions which
are discarded in Step 2.

Class variables. When reasoning at the Boolean level, many solutions are not byte-
consistent because constraints at the byte level have been ignored. However, the output
of the XOR operations allow us to infer some information about the equalty or dif-
ference between the byte values represented by some of the differential bits. Thus, we
introduce new variables that model equality relations between differential bytes. More
precisely, for each differential byte δA ∈ diffBytes , we introduce a variable ClassδA
that models the equivalence class of δA: two differential bytes δA and δB belong to
the same equivalence class (i.e., ClassδA = ClassδB) iff δA = δB. The domain of
ClassδA is [0; 255], as there are 256 byte values.

We add a constraint to assign class 0 to differential bytes with value 0, i.e., ∆A =
0 ⇔ ClassδA = 0. Also, we break symmetries due to the fact that equivalence classes
may be swapped by enforcing an order on them with a precede constraint [12].

Revisiting XOR with Class variables. When defining the XOR(∆A,∆B,∆C) con-
straint, if ∆A = ∆B = 1, then we cannot know whether ∆C is equal to 0 or 1.
However, whenever ∆C = 0 (resp. ∆C = 1), we know for sure that the corresponding
byte δC is equal to 0 (resp. different from 0), meaning that the two bytes δA and δB are
equal (resp. different), i.e., that ClassδA = ClassδB (resp. ClassδA 6= ClassδB). The
same reasoning may be done for∆A and∆B because (δA⊕δB = δC)⇔ (δB⊕δC =
δA)⇔ (δA⊕ δC = δB). Therefore, we redefine the XOR constraint as follows:

XOR(∆A,∆B,∆C)⇔ ∆A+∆B +∆C 6= 1

∧ (ClassδA = ClassδB)⇔ (∆C = 0)

∧ (ClassδA = ClassδC)⇔ (∆B = 0)

∧ (ClassδB = ClassδC)⇔ (∆A = 0)

6

Propagation of MDS at Byte Level. The MDS property ensures that, for each column,
the total number of bytes which are different from 0, before and after applying MC, is
either equal to 0 or strictly greater than 4. This property also holds for any xor difference
between two different columns of X and Y matrices. To propagate this property, for
each pair of columns in X and Y matrices, we add a constraint on the number of bytes
of these columns that are equal (i.e., that have the same Class values).

New constraints derived from KS. The KeySchedule mainly performs xor and S
operations. As a consequence, each byte δKi[j][k] may be expressed as a xor between
bytes of the original key difference δK0, and bytes of δSKi−1 (which are differences of
key bytes that have passed through S during the previous round). Hence, for each byte
δKi[j][k], we precompute the set V (i, j, k) such that V (i, j, k) only contains bytes of
δK0 and δSKi−1 and δKi[j][k] =

⊕
δA∈V (i,j,k) δA. For each set V (i, j, k), we intro-

duce a set variable V1(i, j, k) which is constrained to contain the subset of V (i, j, k)
corresponding to the Boolean variables equal to 1. We use these set variables to infer
that two differential key bytes that have the same V1 set are equal. Also, if V1(i, j, k) is
empty (resp. contains one or two elements), we infer that ∆Ki[j][k] is equal to 0 (resp.
a variable, or a xor between 2 variables).

4 Decomposition of Step 1 into two sub-steps

Our cryptanalytic problem must be solved for three key lengths l ∈ {128, 192, 256},
and for each key length, it must be solved for different round numbers r: when l = 128
(resp. 192 and 256), r ranges from 3 to 5 (resp. 10 and 14). Hence, we have 3, 8, and
12 instances for AES-128, AES-192, and AES-256, respectively. For each instance, the
goal is to find all solutions for a given value of objStep1. In this paper, we consider
only one value for objStep1, i.e., the smallest value for which at least one of the Step1
solutions is byte-consistent as this is the most challenging problem (see [10]).

The CP model for Step 1 was implemented with the MiniZinc modeling language
[14], and we compared four CP solvers: Gecode [9], Choco 4 [15], Picat Sat [16] and
Chuffed [5]. The best results were obtained with Picat Sat and Chuffed. When l = 128,
the best performing solver is Chuffed, which is able to solve all instances within an
hour. On the other hand, for larger keys (l ∈ {192, 256}), Picat Sat gradually becomes
more efficient. However, for the most difficult instance of the problem (l = 192 and
r = 10), neither Chuffed nor Picat Sat can enumerate all solutions within a week.

However, empirical evaluation shows us that Picat Sat finds the first solution rather
quickly, but is not efficient at enumerating all possible solutions when there are too
many solutions. Furthermore, when looking at solutions, we observe some kind of
structure in the repartition of the ∆ variables that are set to 1 and that pass through the
SubBytes operator S. When l = 128, these variables are, for each round i ∈ [0, r − 1]:
SXi = {∆Xi[j][k], j, k ∈ [0, 3]} and SKi = {∆Ki[j][3], j ∈ [0, 3]}4.

To take advantage of the complementarity of Chuffed and Picat Sat, we decompose
Step 1 into two sub-problems. To this aim, we introduce two new integer variables for

4 When l ∈ {192, 256}, the definition of SKi is different.

7

each round i ∈ [0, r − 1], called SumXi and SumKi, and we post the constraints:
SumXi =

∑
∆Xi[j][k]∈SXi

∆Xi[j][k] and SumKi =
∑
∆Ki[j][3]∈SKi

∆Ki[j][3].

Step 1a. We use Picat Sat to search for all possible consistent assignments for SumXi

and SumKi variables: these assignments must satisfy all Step1 constraints. This search
is done incrementally, by adding constraints each time a new solution is found. Let the
values of SumXi and SumKi in the solution be xi and ki: we add the constraint
r−1∨
i=0

(SumXi 6= xi ∨ SumKi 6= ki) before searching for a new solution.

Step 1b. For each solution of Step 1a, we use Chuffed to search for all boolean solutions,
given the values of SumXi and SumKi variables in the Step1a solution.

Experimental results. Figure 2 details the solving times for Step 1 without decompos-
ing the problem, both with Chuffed and Picat Sat, and when decomposing Step 1 into
Step1a and Step1b. For very small instances, Chuffed alone is better for all versions
of the AES. For larger instances Picat Sat performs better than Chuffed and can solve
almost all of them within the time limit of 48 hours. However, one instance is out of
reach for Picat Sat even after a week of computation. On the other hand, it is solved
within 12 hours after decomposing the problem in Step 1a and Step 1b. We do not give
the detailed results of each step: Step 1b is always very quickly solved by Chuffed (in
107 seconds for the hardest instance), and most of the solving time is spent for Step 1a
by Picat Sat. Table 1 gives the number of solutions of Steps 1a and 1b for each instance,
showing that Step 1a has much less solutions than Step 1b. For example, for AES-192
with r = 10 rounds, Step 1a only has 5 solutions whereas Step 1b has 27548 solutions.

5 Conclusion

We have shown that we can solve all instances of our cryptanalysis problem in less than
twelve hours when decomposing the problem into two steps and taking advantage of
the complementarity of Chuffed and Picat Sat. This is much faster than the Branch &
Bound approach of [4], which needs several weeks to solve some of these instances.
It is also faster and much less memory consuming than the approach of [8], that needs
60GB and 30 minutes on a 12-core computer to pre-compute the graph for AES-128.

New results for differential cryptanalysis. For r = 4 rounds, we have found a byte-
consistent solution with objStep1 = 12 and a probability equal to 2−79. This solution is

AES-128 AES-192 AES-256
r 3 4 5 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10 11 12 13 14

Step 1a 1 1 8 3 1 1 2 1 1 1 5 3 2 1 2 1 2 1 1 1 1 1 1
Step 1b 4 8 1113 15 4 2 6 4 8 240 27548 33 14 4 3 1 3 16 4 4 4 4 4

Table 1. Number of solutions of Steps 1a and 1b, for AES-128, 192 and 256, and for different
number of rounds r.

8

3 4 5

1

10

100

1 000

10 000

100 000

Number of rounds (r)

Ti
m

e
(s

)

AES-128

Step 1a/Picat + Step 1b/Chuffed
Step 1/Picat

Step 1/Chuffed

3 4 5 6 7 8 9 10

1

10

100

1 000

10 000

100 000

Number of rounds (r)

Ti
m

e
(s

)

AES-192

Step 1a/Picat + Step 1b/Chuffed
Step 1/Picat

Step 1/Chuffed

3 4 5 6 7 8 9 10 11 12 13 14

1

10

100

1 000

10 000

100 000

Number of rounds (r)

Ti
m

e
(s

)

AES-256

Step 1a/Picat + Step 1b/Chuffed
Step 1/Picat

Step 1/Chuffed

Fig. 2. Results for AES-128 (up left), AES-192 (up right), and AES-256 (down left). Each point
gives the time needed to enumerate all solutions (no point if time exceeds 48 hours).

better than the solution claimed to be optimal in [4] and [8]: In these papers, the authors
say that the best byte-consistent solution has objStep1 = 13, and a probability equal to
2−81. Furthermore, we have shown that the solution proposed in [4] for l = 192 and
r = 11 is inconsistent. We have also found better solutions when l = 256, and we have
computed the actual optimal solution for AES with l = 256. Its probability is 2−146

instead of 2−154 for the solution of [3] (see [10] for more details).

Further work. These cryptanalysis problems open new challenges for the CP commu-
nity. In particular, these problems are not easy to model. Naive CP models (such as the
first model we introduced in [13]) do not scale well. The introduction of equality con-
straints at the byte level (as proposed in [11]) and the decomposition of Step 1 into two
sub-steps solved by two different solvers allow us to solve the hardest instances within
twelve hours but this kind of modeling tricks are not straightforward to design. Hence,
a challenge is to define new CP frameworks, dedicated to cryptanalysis problems, in
order to ease the development of efficient CP models for these problems.

9

References

1. Biham, E.: New types of cryptoanalytic attacks using related keys (extended abstract). In:
Advances in Cryptology - EUROCRYPT ’93. Lecture Notes in Computer Science, vol. 765,
pp. 398–409. Springer (1993)

2. Biham, E., Shamir, A.: Differential cryptoanalysis of feal and n-hash. In: Advances in Cryp-
tology - EUROCRYPT ’91. Lecture Notes in Computer Science, vol. 547, pp. 1–16. Springer
(1991)

3. Biryukov, A., Khovratovich, D., Nikolic, I.: Distinguisher and related-key attack on the full
AES-256. In: Advances in Cryptology - CRYPTO 2009. Lecture Notes in Computer Science,
vol. 5677, pp. 231–249. Springer (2009)

4. Biryukov, A., Nikolic, I.: Automatic search for related-key differential characteristics in byte-
oriented block ciphers: Application to aes, camellia, khazad and others. In: Advances in
Cryptology - EUROCRYPT 2010. Lecture Notes in Computer Science, vol. 6110, pp. 322–
344. Springer (2010)

5. Chu, G., Stuckey, P.J.: Chuffed solver description (2014), available at http://www.
minizinc.org/challenge2014/description_chuffed.txt

6. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer-Verlag (2002)
7. FIPS 197: Advanced Encryption Standard. Federal Information Processing Standards Publi-

cation 197 (2001), u.S. Department of Commerce/N.I.S.T.
8. Fouque, P.A., Jean, J., Peyrin, T.: Structural evaluation of aes and chosen-key distinguisher of

9-round aes-128. In: Advances in Cryptology - CRYPTO 2013. Lecture Notes in Computer
Science, vol. 8042, pp. 183–203. Springer (2013)

9. Gecode Team: Gecode: Generic constraint development environment (2006), available from
http://www.gecode.org

10. Gérault, D., Lafourcade, P., Minier, M., Solnon, C.: Revisiting aes related-key differential
attacks with constraint programming. Cryptology ePrint Archive, Report 2017/139 (2017),
http://eprint.iacr.org/2017/139

11. Gerault, D., Minier, M., Solnon, C.: Constraint programming models for chosen key dif-
ferential cryptanalysis. In: Principles and Practice of Constraint Programming - CP 2016.
Lecture Notes in Computer Science, vol. 9892, pp. 584–601. Springer (2016)

12. Law, Y.C., Lee, J.H.M.: Global Constraints for Integer and Set Value Precedence, pp. 362–
376. Springer Berlin Heidelberg (2004)

13. Minier, M., Solnon, C., Reboul, J.: Solving a Symmetric Key Cryptographic Problemwith
Constraint Programming (Jul 2014), https://hal.inria.fr/hal-01092574,
modRef 2014, Workshop of the CP 2014 Conference, September 2014, Lyon, France

14. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Minizinc: Towards
a standard CP modelling language. In: Principles and Practice of Constraint Programming -
CP 2007. Lecture Notes in Computer Science, vol. 4741, pp. 529–543. Springer (2007)

15. Prudhomme, C., Fages, J.G.: An introduction to choco 3.0: an open source java constraint
programming library. In: CP Workshop on ”CP Solvers: Modeling, Applications, Integration,
and Standardization” (2013)

16. Zhou, N.F., Kjellerstrand, H., Fruhman, J.: Constraint Solving and Planning with Picat.
Springer (2015)

On Improving Run-time Checking in Dynamic
Languages

(Presented in the Context of (C)LP Systems)

Nataliia Stulova?1,2

1 IMDEA Software Institute, Madrid, Spain
nataliia.stulova@imdea.org
2 School of Computer Science,

Technical University of Madrid(UPM),
Madrid, Spain

Abstract. In order to detect incorrect program behaviors, a number of
approaches have been proposed, which include a combination of language-
level constructs (procedure-level annotations such as assertions/contracts,
gradual types, etc.) and associated tools (such as static code analyzers
and run-time verification frameworks). However, it is often the case that
these constructs and tools are not used to their full extent in practice due
to a number of limitations such as excessive run-time overhead and/or
limited expressiveness. The issue is especially prominent in the context of
dynamic languages without an underlying strong typing system, such as
Prolog. In our work we propose several practical solutions for minimiz-
ing the run-time overhead associated with assertion-based verification
while keeping the correctness guarantees provided by run-time checks.
We present the solutions in the context of the Ciao system, where a
combination of an abstract interpretation-based static analyzer and run-
time verification framework is available, although our proposals can be
straightforwardly adapted to any other similar system.

Keywords: runtime verification, assertions, Prolog, logic programming

1 Introduction

Detecting incorrect program behaviors is an important part of the software de-
velopment life cycle. It is also a complex and tedious one, in which dynamic
languages bring special challenges.

A number of techniques have been proposed to aid in the process, among
which we center our attention on the use of language-level constructs to describe
expected program behavior, and of associated tools to compare actual program
behavior against expectations, such as static code analyzers/verifiers and run-
time verification frameworks. Approaches that fall into this category are the
assertion-based frameworks used in (Constraint) Logic Programming [1,2,3,4],
? Supervised by José F. Morales1 and Manuel V. Hermenegildo1,2

soft/gradual typing approaches in functional programming [5,6,7]and contract-
based extensions in object-oriented programming [8,9,10]. These tools are aimed
at detecting violations of the expected behavior or certifying the absence of any
such violations, and often involve a certain degree of run-time testing, specially
for non-trivial properties.

In practice, however, run-time overhead often remains impractically high,
specially for complex properties, such as, for example, deep data structure tests.
This reduces the attractiveness of run-time checking to programmers, which may
allow sporadic checking of very simple conditions, but tend to turn off run-time
checking for more complex properties. Some approaches even opt for limiting
the expressiveness of the assertion language in order to reduce the overhead..

Our research objective is twofold:
– First, we aim for an expressive assertion language reflects the features of the

related programming language, which both allows a programmer to write
precise program specifications and does not impose a learning burden.

– At the same time, our goal is to efficiently checks such specifications, miti-
gating the associated run-time overhead as much, as possible without com-
promising the safety guarantees the checks provide.

While our work is general and system-independent, we present it for con-
creteness in the context of the Ciao run-time checking framework. The Ciao
model [11,2] is well understood, and different aspects of it have been incorpo-
rated in popular (C)LP systems, such as Ciao, SWI, and XSB [12,13,14].

2 Current Research Results

2.1 Supporting Higher-Order Properties

Higher-order programming is a widely adopted programming style that adds flex-
ibility to the software development process. Within the (Constraint) Logic Pro-
gramming ((C)LP) paradigm, Prolog has included higher-order constructs since
the early days, and there have been many other proposals for combining the first-
order kernel of (C)LP with different higher-order constructs, e.g., [15,16,17]).Many
of these proposals are currently in use in different (C)LP systems and have been
found very useful in programming practice, inheriting the well-known benefits
of code reuse (templates), elegance, clarity, and modularization.

When higher-order constructs are introduced in the language it becomes
necessary to describe properties of arguments of predicates/procedures that are
themselves also predicates/procedures. While the combination of contracts and
higher-order has received some attention in functional programming [18,19],
within (C)LP the combination of higher-order with the previously mentioned
assertion-based approaches has received comparatively little attention to date.
Current Prolog systems simply use basic atomic types (i.e., stating simply that
the argument is a pred, callable, etc.) to describe predicate-bearing variables
(see 1). Other approaches [20] are oriented instead to meta programming, de-

1 :- pred min(X,Y,Cmp ,Min) : callable(Cmp).
2
3 min(X,Y,P,Min) :- P(R,X,Y), R <= 0, Min = X.
4 min(X,Y,_,Y).
5
6 less(0,A,A). lt(’=’,A,A).
7 less(-1,A,B) :- A < B. lt(’<’,A,B) :- A < B.
8 less(1,_,_). lt(’>’,_,_).
9

10 test_min :- min(4,2,lt ,2). % lt/3 is passed , but less/3 is expected

Fig. 1. A simple program with a higher-order predicate min/4 that accepts a custom
comparator predicate.

scribing meta-types but there is no notion of directionality (modes), and only a
single pattern is allowed per predicate.

Our proposal [21] contributes towards filling this gap between higher-order
(C)LP programs and assertion-based extensions for error detection and pro-
gram validation. Our starting point is the Ciao assertion model, which we have
enhanced with a new class of properties, “predicate properties” (predprops in
short), and proposed a syntax and semantics for them. These new properties
can be used in assertions for higher-order predicates to describe the properties
of the higher-order arguments. An example of a predprop is provided in Fig. 2,
where an anonymous assertion (note the variable symbol Cmp in place of a pred-
icate symbol) is used to describe a comparison predicate, that is not known at
compilation time. By reusing the original assertion language syntax to describe
call and success conditions of predicate-bearing arguments we allow both for
better integration of these new constructs into the verification framework and
at the same time lessening the burden on a programmer, who needs to provide
such annotations.

1 :- comparator(Cmp) {
2 :- pred Cmp(Res ,M,N) : (num(M), num(N)) => between(-1,1,Res).
3 }.
4
5 :- pred min(X,Y,Cmp ,Min) : comparator(Cmp).

Fig. 2. A predprop comparator example and an anonymous assertion in its definition.

Our predprop properties specify conditions for predicates that are indepen-
dent of the usage context. This corresponds in functional programming to the
notion of tight contract satisfaction, and it contrasts with alternative approaches
such as loose contract satisfaction. In the latter, contracts are attached to higher-
order arguments by implicit function wrappers. The scope of checking is local to
the function evaluation. Although this is a reasonable and pragmatic solution,
we believe that our approach is more general and more amenable to combination
with static verification techniques. For example, avoiding wrappers allows us to

remove checks (e.g., by static analysis) without altering the program semantics.
Moreover, our approach can easily support loose contract satisfaction, since it
is straightforward in our framework to optionally include wrappers as special
predprops.

2.2 Trading Memory for Speed

While having become an integral part of software development process, run-time
testing can generally incur high penalty in execution time and/or space over the
standard program execution without tests. A number of techniques have been
proposed to date to reduce this overhead, including simplifying the checks at
compile time via static analysis [22,11] or reducing the frequency of checking,
including for example testing only at a reduced number of points [4,23]. Our
proposal of [24] describes an approach to run-time testing that is efficient while
being minimally obtrusive and remaining exhaustive. It is based on the use of
memoization to cache intermediate results of check evaluation in order to avoid
repeated checking of previously verified properties over the same data structure.

Memoization has of course a long tradition in (C)LP in uses such as tabling
resolution [25,26].Memoization has also been used in program analysis [27,28],
where tabling resolution is performed using abstract values. However, in tabling
and analysis what is tabled are call-success patterns and in our case the aim is
to cache the results of test execution.

We concentrate our attention on the checks of the regular types [29], a useful
subset of properties that are often used in assertions. An example in Fig. 3 shows
a binary tree (left) and its possible implementation as a regular type together
with an instance of that type describing the tree (right).

Our approach is based on an observations that run-time checks of regular
types are monotonous instantiation checks, e.g. terms only become more and
more instantiated with every consequent state that the program enters. We ex-
tend the Ciao run-time checking framework with a common cache, accessible to
run-time checks, that stores tuples (x, t), where x is a term address and t is an
identifier of a regular type. After the initial check on the term is performed, the
corresponding tuple is added to the cache and for all the consequent checks on
the term the check substituted by the (computationally cheaper) cache lookup
operation.

99

19

3

36

25 1

1 tree(e).
2 tree(t(L,_,R)) :- tree(L), tree(R).
3
4 t(,99,)
5 t(,19,) t(,36,)
6 e t(,3,) t(,25,) t(,1,)
7 e e e e e e
8

Fig. 3. A minimalistic tree data structure implementation as a regular type tree/1

While studying the resulting performance of the enhanced verification frame-
work we have observed the using a cache does not necessarily lead to a significant
checks cost reduction. An important issue that must be taken into account is
the character of cache rewrites: as the terms grow in size cache collisions hap-
pen more often, which leads to elements eviction. This in turn cancels out the
advantage that using a cache gives: the ability to just lookup the regular type of
some term without actually performing the check of it. However, this effect can
be remedied by limiting the depth of terms that are stored in the cache (e.g.,
not caching terms with depth more than some n).

The idea of using memoization techniques to speed up checks has attracted
some attention recently [30]. Their work (developed independently from ours) is
based on adding fields to data structures to store the properties that have been
checked already for such structures. In contrast, our approach has the advantage
of not requiring any modifications to data structure representation, or to the
checking code, program, or core run-time system.

2.3 Intertwining Compile- and Run-time Checks

A complementary approach to run-time overhead reduction consists in using
static analysis to minimize the number and cost of the run-time checks that need
to be placed in the program to detect incorrect program behaviors. This idea
was pioneered by the Ciao system where a number of (abstract interpretation-
based) static analyses are combined in order to verify assertions to the largest
extent possible at compile time, and for simplifying and reducing the number of
remaining properties that that need to be introduced in the program as run-time
checks. However, while there has been evidence from use, there has been little
systematic experimental work presented to date measuring the actual impact of
analysis on reducing run-time checking overhead.

In our work [31] we generalize the existing practices as four assertion checking
modes, each of which represents a trade-off between code annotation depth,
execution time slowdown, and program behavior safety guarantees:

– Unsafe: no run-time checks are generated from program assertions, program
execution is fast but incorrect program behaviors may stay undetected; the
run-time overhead is nonexistent.

– Client-Safe: run-time checks are generated from the assertions of the pro-
gram’s interface (providing behavior guarantees of it for the clients), yet in-
ternal program assertions remain unchecked; the run-time overhead is taken
as a minimal unavoidable one.

– Safe-RT : run-time checks are generated from all program assertions; this
mode of checking is characterized with the strongest behavior safety guar-
antees yet is at the same time associated with highest check costs;

– Safe-CT-RT : a variation of Safe-RT checking mode with an additional static
analysis phase, during which some of program assertions may be proven
to always hold and generating run-time checks from them can be omitted;
depending on the kind of analysis and the program the overhead generated

Code

Assertions

Program

Code

Assertion
conditions

Program

Code

Assertion
conditions
(reduced)

Program

Code

Program

Code

Run-time
checks
(exports)

Program

Code

Run-time
checks
(all)

Program

Code

Run-time
checks
(reduced)

Program

Unsafe Client-safe Safe-RT Safe-CT-RT

Normalizer

RT-checks

Static
Analysis

Fig. 4. Source transformation differences per checking mode.

by the checks from remaining assertions may be closer to that of Client-Safe
Safe-RT modes.

We also define a transformation-based approach in order to implement each one
of these modes (see Fig. 4).

We then concentrate on the reduction of the number of run-time tests via
(abstract interpretation-based) program analysis. To this end we propose a tech-
nique that enhances analysis precision by taking into account that any assertions
that cannot be proved statically will be the subject of run-time testing. In prac-
tice it means that it is safe to make the two following assumptions for any
predicate that has an assertion specifying properties, that should hold on calls
and success:

– the calls conditions hold after the analysis has entered the predicate defini-
tion, since either the checks for these calls conditions have already succeeded
or the program has exited with error;

– the relevant success conditions hold after the predicate has exited (since,
again, at this point either these success conditions have already succeeded
or the program has exited with error)

2.4 Benefiting from Information Hiding

While dynamic languages offer for programmers great flexibility in term creation
and manipulation, for the very same reason the need in exhaustive run-time

checks arises in order to guarantee the data manipulation safety and correctness.
Reusable libraries, i.e., library modules that are pre-compiled independently of
the client, pose special challenges in this context. The key issue here is that there
is virtually no control on how and where valid terms can be created, and thus it
is quite common in the client-library interaction that any of these modules can
create any data shape and pass it. As a consequence, (often expensive) run-time
checks on the module boundaries become the necessary evil. In our work [32] we
propose a possible solution to overhead reduction for run-time checks on module
boundaries based on the information hiding principle (which is adopted in many
other systems in form of encapsulation or opaque data types).

Currently, most mature Prolog implementations adopt some flavor of a mod-
ule system, predicate-based in SWI [33], SICStus [34], YAP [35], ECLiPSe [36],
and atom-based in XSB [13]. The difference between the two systems is the strict-
ness of the term visibility rules: in an atom-based system local to the module
terms are not visible outside it if they are not a part of the module interface.
The Ciao approach [37] has until now been closer to a predicate-based module
system.

We propose an extension of the predicate-based module system, that allows
to specify only a subset of module terms as local (hidden) ones. Our argument
is that in this setup we have the guarantee of the homogeneity of the structure
of the module terms, as only one module is allowed to construct/deconstruct
some particular data shapes. With this there is no need to perform thorough
checks of properties that verify the correctness of the data term structure at
the module boundaries. Instead, it would suffice to perform checks of shallow
versions of data shape properties: the weakened forms of the original properties
that are semantically equivalent to them in the context of the possible program
executions. These versions typically require asymptotically fever execution steps
and in some cases of the calls across module boundaries allow to achieve constant
run-time overhead.

3 Conclusions

Specification-based runtime verification approach has attracted significant inter-
est in recent decades, both from academia and industry. As it is the case with
any other open problem, finding an approach that would suit each and every
system is not feasible, thus opting for tailored partial solutions is inevitable and
more practical.

In our work we have concentrated on the peculiarities of the run-time verifi-
cation task in the context of dynamic languages and their use in (C)LP systems.
We have proposed an enhancement for the Ciao assertion language that allows
to capture the concrete execution contexts of higher-order terms and thus adapts
the verification framework to this new use case. We have also proposed several
solutions for reducing the overhead, associated with run-time checks, that treat
the issue from several different angles.

While for concreteness of presentation our work was carried out within the
Ciao language and combined static/dynamic verification framework, our results
are general and system-independent. We believe they can be straightforwardly
transferred to the contexts of other declarative languages, and given the recent
advances in the Horn clause-based verification we feel that our results could also
be adapted to the broader specter of languages (e.g. imperative ones).

References

1. W. Drabent, S. Nadjm-Tehrani, and J. Małuszyński. The Use of Assertions in
Algorithmic Debugging. In Intl. Conf. on Fifth Generation Computer Systems,
pages 573–581, 1988.

2. G. Puebla, F. Bueno, and M. Hermenegildo. Combined Static and Dynamic
Assertion-Based Debugging of Constraint Logic Programs. In Logic-based Pro-
gram Synthesis and Transformation (LOPSTR’99), number 1817 in LNCS, pages
273–292. Springer-Verlag, March 2000.

3. Claude Laï. Assertions with Constraints for CLP Debugging. In Pierre Deransart,
Manuel V. Hermenegildo, and Jan Maluszynski, editors, Analysis and Visualization
Tools for Constraint Programming, volume 1870 of Lecture Notes in Computer
Science, pages 109–120. Springer, 2000.

4. E. Mera, P. López-García, and M. Hermenegildo. Integrating Software Testing
and Run-Time Checking in an Assertion Verification Framework. In 25th Int’l.
Conference on Logic Programming (ICLP’09), volume 5649 of LNCS, pages 281–
295. Springer-Verlag, July 2009.

5. Robert Cartwright and Mike Fagan. Soft Typing. In PLDI’91, pages 278–292.
SIGPLAN, ACM, 1991.

6. Sam Tobin-Hochstadt and Matthias Felleisen. The Design and Implementation of
Typed Scheme. In POPL, pages 395–406. ACM, 2008.

7. Asumu Takikawa, Daniel Feltey, Earl Dean, Matthew Flatt, Robert Bruce Findler,
Sam Tobin-Hochstadt, and Matthias Felleisen. Towards practical gradual typing.
In John Tang Boyland, editor, 29th European Conference on Object-Oriented Pro-
gramming, ECOOP 2015, July 5-10, 2015, Prague, Czech Republic, volume 37 of
LIPIcs, pages 4–27. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

8. Leslie Lamport and Lawrence C. Paulson. Should your specification language be
typed? ACM Transactions on Programming Languages and Systems, 21(3):502–
526, May 1999.

9. Gary T. Leavens, K. Rustan M. Leino, and Peter Müller. Specification and verifi-
cation challenges for sequential object-oriented programs. Formal Asp. Comput.,
19(2):159–189, 2007.

10. Manuel Fähndrich and Francesco Logozzo. Static contract checking with abstract
interpretation. In Proceedings of the 2010 International Conference on Formal
Verification of Object-oriented Software, volume 6528 of FoVeOOS’10, pages 10–
30, Berlin, Heidelberg, 2011. Springer-Verlag.

11. M. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis, Partial Spec-
ifications, and an Extensible Assertion Language for Program Validation and De-
bugging. In K. R. Apt, V. Marek, M. Truszczynski, and D. S. Warren, editors, The
Logic Programming Paradigm: a 25–Year Perspective, pages 161–192. Springer-
Verlag, July 1999.

12. M. V. Hermenegildo, F. Bueno, M. Carro, P. López, E. Mera, J.F. Morales,
and G. Puebla. An Overview of Ciao and its Design Philosophy. The-
ory and Practice of Logic Programming, 12(1–2):219–252, January 2012.
http://arxiv.org/abs/1102.5497.

13. Terrance Swift and David Scott Warren. XSB: Extending Prolog with Tabled
Logic Programming. TPLP, 12(1-2):157–187, 2012.

14. Edison Mera and Jan Wielemaker. Porting and refactoring Prolog programs: the
PROSYN case study. TPLP, 13(4-5-Online-Supplement), 2013.

15. D.H.D. Warren. Higher-order extensions to Prolog: are they needed? In J.E. Hayes,
Donald Michie, and Y-H. Pao, editors, Machine Intelligence 10, pages 441–454.
Ellis Horwood Ltd., Chicester, England, 1982.

16. Gopalan Nadathur and Dale Miller. Higher–Order Logic Programming. In D. Gab-
bay, C. Hogger, and A. Robinson, editors, Handbook of Logic in Artificial Intelli-
gence and Logic Programming, volume 5. Oxford University Press, 1998.

17. D. Cabeza, M. Hermenegildo, and J. Lipton. Hiord: A Type-Free Higher-Order
Logic Programming Language with Predicate Abstraction. In Ninth Asian Com-
puting Science Conference (ASIAN’04), number 3321 in LNCS, pages 93–108.
Springer-Verlag, December 2004.

18. Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions.
In Mitchell Wand and Simon L. Peyton Jones, editors, ICFP, pages 48–59. ACM,
2002.

19. Christos Dimoulas and Matthias Felleisen. On contract satisfaction in a higher-
order world. ACM Trans. Program. Lang. Syst., 33(5):16, 2011.

20. C. Beierle, R. Kloos, and G. Meyer. A Pragmatic Type Concept for Prolog Support-
ing Polymorphism, Subtyping, and Meta-Programming. In Proc. of the ICLP’99
Workshop on Verification of Logic Programs, Las Cruces, Electronic Notes in The-
oretical Computer Science, volume 30, issue 1. Elsevier, 2000.

21. N. Stulova, J. F. Morales, and M. V. Hermenegildo. Assertion-based Debugging of
Higher-Order (C)LP Programs. In 16th Int’l. ACM SIGPLAN Symposium on Prin-
ciples and Practice of Declarative Programming (PPDP’14). ACM Press, Septem-
ber 2014.

22. F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszyn-
ski, and G. Puebla. On the Role of Semantic Approximations in Validation and
Diagnosis of Constraint Logic Programs. In Proc. of the 3rd. Int’l WS on Auto-
mated Debugging–AADEBUG, pages 155–170. U. Linköping Press, May 1997.

23. E. Mera, T. Trigo, P. López-García, and M. Hermenegildo. Profiling for Run-Time
Checking of Computational Properties and Performance Debugging. In Practical
Aspects of Declarative Languages (PADL’11), volume 6539 of Lecture Notes in
Computer Science, pages 38–53. Springer-Verlag, January 2011.

24. N. Stulova, J. F. Morales, and M. V. Hermenegildo. Practical Run-time Check-
ing via Unobtrusive Property Caching. Theory and Practice of Logic Program-
ming, 31st Int’l. Conference on Logic Programming (ICLP’15) Special Issue, 15(04-
05):726–741, September 2015.

25. H. Tamaki and M. Sato. OLD Resol. with Tabulation. In ICLP, pages 84–98.
LNCS, 1986.

26. S. Dietrich. Extension Tables for Recursive Query Evaluation. PhD thesis, Depar-
tament of Computer Science, State University of New York, 1987.

27. R. Warren, M. Hermenegildo, and S. K. Debray. On the Practicality of Global Flow
Analysis of Logic Programs. In Fifth International Conference and Symposium on
Logic Programming, pages 684–699. MIT Press, August 1988.

28. K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable
Dependency Using Abstract Interpretation. Journal of Logic Programming,
13(2/3):315–347, July 1992.

29. P.W. Dart and J. Zobel. Efficient Run-Time Type Checking of Typed Logic Pro-
grams. Journal of Logic Programming, 14:31–69, October 1992.

30. Emmanouil Koukoutos and Viktor Kuncak. Checking Data Structure Properties
Orders of Magnitude Faster. In Borzoo Bonakdarpour and Scott A. Smolka, ed-
itors, Runtime Verification, volume 8734 of Lecture Notes in Computer Science,
pages 263–268. Springer International Publishing, 2014.

31. N. Stulova, J. F. Morales, and M. V. Hermenegildo. Reducing the Overhead of
Assertion Run-time Checks via static analysis. In 18th Int’l. ACM SIGPLAN
Symposium on Principles and Practice of Declarative Programming (PPDP’16),
pages 90–103. ACM Press, September 2016.

32. N. Stulova, J. F. Morales, and M. V. Hermenegildo. Term Hiding and its Im-
pact on Run-time Check Simplification (Extended Abstract). In Proceedings of the
Technical Communications of the 33rd International Conference on Logic Program-
ming (ICLP 2017), Melbourne, Australia, August 28 - September 1, 2017. OASIcs,
August 2017.

33. J. Wielemaker. The SWI-Prolog User’s Manual 5.9.9, 2010.
34. Swedish Institute for Computer Science, PO Box 1263, S-164 28 Kista, Sweden.

SICStus Prolog User’s Manual, 4.1.1 edition, December 2009.
35. Vítor Santos Costa, Luís Damas, and Ricardo Rocha. The YAP

Prolog System. Theory and Practice of Logic Programming, 2011.
http://arxiv.org/abs/1102.3896v1.

36. Cisco Systems. ECLIPSE User Manual, 2006.
37. D. Cabeza and M. Hermenegildo. A New Module System for Prolog. In Interna-

tional Conference CL 2000, volume 1861 of LNAI, pages 131–148. Springer-Verlag,
July 2000.

Efficiently Computing Weighted Egalitarian
Solutions For Multi-Objective Constraint

Optimization Problems

Emir Demirović1 and Nicolas Schwind2

1 Student
Vienna University of Technology, Vienna, Austria

demirovic@dbai.tuwien.ac.at,
2 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

nicolas-schwind@aist.go.jp

Abstract. Solving a multi-objective constraint optimization problem
(MO-COP) typically requires computing an exponentially large num-
ber of Pareto optimal solutions. This is particularly problematic in a
product configuration context where an end user is asked to select her
preferred Pareto optimal solution from such a large set. The notion of
representative solutions has been recently proposed to handle the lack
of decisiveness. Given an integer k, the problem consists in extracting
a restricted set of k Pareto optimal solutions whose objective vectors
are “close enough” to any other Pareto optimal solution. Although the
idea of representative solutions appears to be a desirable concept in MO-
COPs, the problem of finding k representative solutions is computation-
ally hard (ΣP

2 -hard), which makes the approach inapplicable to real-world
instances. However, the efficiency issue can be addressed by approxi-
mating the representative solutions using weighted egalitarian solutions
(ω-solutions). In this paper, we address the efficiency issue by provid-
ing two techniques for computing the ω-solutions, which can be used to
approximate the set of representative solutions. This provides us with a
reasonable trade-off between representativity and efficiency, allowing one
to make representative solutions a practical answer to the decisiveness
issue for large MO-COP problems.

Keywords: multi-objective constraint optimization, representative so-
lutions, weighted egalitarian solutions

1 Introduction

This paper deals with multi-objective constraint optimization problems (MO-
COPs), in which several objective functions are to be minimized or maximized
simultaneously. Usually, in such problems, there is no solution that is optimal
with respect to all objectives. Therefore, trade-offs between objectives must be
made. However, such trade-offs are domain-dependent or based on some under-
lying user’s preferences, so usually no a priori decision making is possible. Thus,

II

solutions are typically preferred based on the sole notion of Pareto optimality,
that is, a solution is Pareto optimal if it is not dominated by any other solution
with respect to all objectives.

Two main problems arise from these considerations: the lack of efficiency
and decisiveness: in the general case, an MO-COP is associated with an expo-
nentially large set of Pareto optimal solutions. This is problematic in a product
configuration context, where an end user is asked to select her preferred solution
from the Pareto optimal set. Indeed, according to psychological studies not more
than seven alternatives can be pairwise compared by a user [7], and studies in
recommender systems conclude that it is best to provide only three choices [17].

A recent approach for MO-COPs has been proposed to address the decisive-
ness issue [15]. It consists in computing a single Pareto optimal solution, called
weighted egalitarian solution. Intuitively, this approach consists in “targeting”
a specific area of the objective vector space “close” to the line defined by the
weighted vector, which represents preferences among different objectives. How-
ever, expressing quantitative relative importance between preferences may be
cumbersome for the end user making these weighted vectors often unavailable.
Another approach is based on diverse solutions [5, 13]. The goal is to compute a
set of solutions that are pairwise distant. Though diverse solutions are suitable
for problems such as software testing where diverse inputs are sought for testing
purpose, they are arguably not suitable for MO-COPs as, e.g. they do not pro-
vide an overview of the shape of the Pareto optimal set of solutions. Recently,
Schwind et al. [14] introduced a filtering function which is more suitable for
MO-COPs called representativity, by taking their inspiration from the problem
of locating facilities in the field of discrete location theory [10, 4, 6]. Given an
MO-COP and an integer k, the idea is to compute k solutions whose covering
radius is minimized in the space of Pareto optimal solutions. Therefore, one has
the guarantee that every Pareto optimal solution of the MO-COP is close enough
to one of the k representative solutions.

However, the issue of computational efficiency has remained unresolved by
considering representative solutions. Indeed, computing k representative solu-
tions is a ΣP

2 -hard problem even if k = 1: it is one of the hardest problems lying
on the second level of the polynomial hierarchy [14]. An approximation approach
based on the notion of weighted egalitarian solutions has been introduced in [14].
The algorithm proposed in [14] scales well with the number of objectives, but
not with respect to the problem size (e.g. number of variables). Thus, it cannot
be used for practical applications.

In this paper, we provide two new techniques for computing weighted egalitar-
ian solutions. The first encodes the sorted cost vector through auxiliary variables
and then uses lexicographical optimization, while the second iteratively builds
partial candidate solutions. To the best of our knowledge, this is the first time
algorithms for computing weighted egalitarian solutions have been sufficiently
developed to efficiently tackle large-size MO-COP instances, offering direct im-
provements over the algorithm in [14]. In addition, we proved that computing
ω-solutions to approximate the set of representative solutions is NP-hard, from

III

which one can expect a substantial efficiency gain when compared to computing
the k representative solutions (ΣP

2 -hard).
The rest of the paper is organized as follows. The next section provides the

necessary preliminaries on MO-COPs, computational complexity, representative
solutions, and weighted egalitarian solutions. In Section 3 we present our main
contributions which include two techniques for computing weighted egalitarian
solutions and prove the complexity shift. We conclude in Section 5.

2 Preliminaries

2.1 MO-COPs

Following the notation used in [14, 15], a multi-objective constraint optimiza-
tion problem (MO-COP) is defined as a tuple ⟨X ,D, Chard, Csoft⟩, where: X =
{x1, . . . , xn} are variables; D = {D1, . . . , Dn} are domains; Chard are hard con-
straints, i.e., each constraint C ∈ Chard is a subset of Di1 × · · · × DiC

for
some {Di1 , . . . , DiC

} ⊆ D; and Csoft are soft, polyadic constraints, i.e., each
constraint C ′ ∈ Csoft is a mapping from Di1 × · · · × DiC′ to Nm, for some
{Di1 , . . . , DiC′} ⊆ D. Here, m represents the number of objectives of the MO-
COP. Each constraint from Chard ∪ Csoft involves a set of variables called its
scope. For simplicity, when not explicitly stated we consider given an MO-COP
⟨X ,D, Chard, Csoft⟩ with m objectives. An assignment A associates each xi ∈ X
with a value from Di; A is a solution if it satisfies all hard constraints, i.e., there
is no C ∈ Chard such that (A(xi1), . . . , A(xiC

)) ∈ C, where {xi1 , . . . , xiC
} is the

scope of C. Given a vector U , we denote by U i or U(i) its ith component. The
cost vector of A is the vector V (A) defined for each t ∈ {1, . . . , m} as

V (A)t =
∑

C∈Csoft

C(A(xi1), . . . , A(xiC
))(t)

where for each C, {xi1 , . . . , xiC
} is the scope of C.

A Pareto optimal solution3 is a solution S for which there is no solution S′

such that for all i ∈ {1, . . . , m} and for some j ∈ {1, . . . , m}, V (S′)i ≤ V (S)i

and V (S′)j < V (S)j . SPar denotes the set of all Pareto optimal solutions.

2.2 Representative solutions

Representative solutions [14] are fixed-sized subsets S∗ of Pareto optimal solu-
tions for which the maximum “distance” between any Pareto optimal solution
from SPar and one of the solutions from S∗ is minimized. That is, given an
integer k corresponding to the desired size of S∗, computing S∗ consists in mi-
nimizing the function Ω : {S ∈ 2SP ar | |S| = k} 7→ N defined for every set
S ⊆ SPar(P) as:

Ω(S) = max
A∈SP ar(P)

min
A′∈S

d(V (A), V (A′)),

3 Without loss of generality, we consider here a minimization setting.

IV

where d is a distance between cost vectors. For simplicity, we assume that d
corresponds to the Manhattan distance defined for all V1, V2 ∈ Nm as d(V1, V2) =∑m

i=1 |V i
1 − V i

2 |. The radius of S is denoted Ω(S). Therefore, the goal is to
compute a set S∗of k Pareto optimal solutions whose radius Ω(S∗) is minimal.

We assume that the reader is familiar with the complexity class NP (see
[12] for more details). Higher complexity classes are defined using oracles. In
particular, ΣP

2 = NPNP corresponds to the class of decision problems that are
solved in non-deterministic polynomial time by deterministic Turing machines
using an oracle for NP in polynomial time.

Computing k representative solutions is a hard problem, even for k = 1:

Theorem 1 ([14]). Given an MO-COP P and two integers α, k, the problem
of deciding whether there exists S ⊆ SPar(P) such that |S| = k and Ω(S) ≤ α
is ΣP

2 -hard, even when k = 1.

2.3 Weighted Egalitarian Solutions

A weight vector [16] is a vector ω ∈]0, 1]m such that
∑m

k=1 ωk = 1. Given a
weight vector ω, an ω-weighted egalitarian solution [15] (named “ω-solution”
in the following) is a solution A for which there is no solution A′ such that
V (A)<,ω ≤lex V (A′)<,ω, where ≤lex is the lexicographic ordering induced by
the natural ordering, and V (A)<,ω is the vector obtained by sorting in a non-
increasing order the vector (ω1.V (A)1, . . . , ωm.V (A)m) (see [15] for more de-
tails). ω-solutions exhibit a number of interesting properties: (i) they are Pareto
optimal; (ii) they correspond to solutions that are “close” to the line whose equa-
tion is specified by ω in the solution space; (iii) for any Pareto optimal solution
A, there exists a weight vector ω such that A is an ω-solution. Hence, given a
weight vector, one can use this concept to “target” a specific area. Note that
ω-solutions differ from solutions minimizing a weighted sum of the objectives.
In particular, points (ii) and (iii) do not hold for “weighted sum” solutions [15].

The concept of ω-solution was initially introduced in [15] to select the “best”
Pareto optimal solution according to some user’s preferences among the objec-
tives. This requires ω to be defined in accordance with these preferences, which
are not necessarily available or not expressed quantitatively. However, one can
take advantage of the concept of ω-solutions to approximate a set of k repre-
sentative solutions as follows [14]. First, one starts with a set W∗ of k weight
vectors whose radius is minimal among all possible sets of k weight vectors, that
is, W∗ is a set that is “representative” of the space of all weight vectors. We
assume that such a set W∗ is computed “offline” i.e., it does not depend on the
MO-COP to be solved but only on m and k. To do so, we finely discretize the
space of weight vectors and then use an exact algorithm [14] to compute the
representative set W∗. Second, we compute an ω-solution for each weight vector
ω ∈W∗. Then the challenge lies in the efficiency of the procedure to compute a
particular ω-solution for a given weight vector ω; this is what we address in the
next section.

We refer the reader to [15, 14] for more details, examples, and illustrations
on MO-COPs, representative solutions and ω-solutions.

V

3 Computing ω-solutions

We stress that the process of computing ω-solutions to approximate a set of
representative solutions is NP-hard (cf. Theorem 1) compared to ΣP

2 -hard, from
which one can expect a substantial efficiency gain when compared to computing
the k representative solutions (ΣP

2 -hard). This is given in the following proposi-
tion:

Proposition 1. Given an MO-COP P , a weight vector ω and, a vector U ∈ Nm

the problem of deciding whether there exists an ω-solution S such that for all
i ∈ {1, . . . , m}, V (S)i ≤ U i, is NP-complete.

We consider computing the ω-solution where all weights are equal (ωi = 1/m)
and refer to these as egalitarian solutions. Weighted solutions can be obtained
by scaling the objective as preprocessing. We introduce objective variables ei =
V (A)i for an MO-COP ⟨X ,D, Chard, Csoft⟩ with m objectives. We developed two
techniques: an encoding-based approach and an iterative algorithm. The former
encodes variables that capture values of the sorted cost vector and then uses
lexicographical optimization, while the latter incrementally builds egalitarian
solutions.

Encoding-based technique. Let variables {l1, . . . , lm} be such that given a
solution A, each li takes the ith largest value among (A(e1), . . . , A(em)). To do
so, we make use of a set of auxiliary Boolean variables {S(i,j) : i, j ∈ [1, ...m]}:

∑

j

S(i,j) = 1 ∀i ∈ {1, . . . , m} (1)

∑

i

S(i,j) = 1 ∀j ∈ {1, . . . , m} (2)

(S(i,j) = 1)⇒ (li = ej) ∀i, j ∈ {1, . . . , m} (3)

li ≥ li+1 ∀i ∈ {1, . . . , m− 1} (4)

The above equations guarantee that for every solution A, A(S(i,j)) = 1 if

the objective variable ej takes the ith highest value among (A(e1), . . . , A(em)),
and A(S(i,j)) = 0 otherwise. Equation 1 and 2 states that every objective is as-
signed a unique ordering number. Equations 3 and 4 ensure that the appropriate
assignments take place. We note that the addition of the previously discussed
variables and constraints to the MO-COP does not affect its set of solutions,
and the soft constraints from Csoft remain unchanged. Therefore, we extended
the initial MO-COP with variables li which encode the sorted values of the cost
vector components V (A)i. To obtain the egalitarian solution any lexicographical
optimization algorithm can be used, first minimizing l0, then l1, and so on.

VI

Iterative algorithm. The algorithm is summarized in Algorithm 1. It starts
with a set of partial candidate assignments for the objective variables, initially
containing the empty assignment (Line 3). In each iteration, new partial assign-
ments are computed for each set in the set of candidates (Lines 4-11). These
newly computed assignments are identical to the assignments they are based on,
but with the addition of one more objective variable being assigned (Line 10).
Dominated assignments with respect to ≤lex are removed (Line 12). Therefore,
after the i-th iteration, we obtain the set of non-dominated candidate partial
assignments that have (i+1) objective variables assigned.

To compute new candidate assignments based on a partial assignment pa
(Line 8) we define MO-COP(ei,pa) which extends MO-COP with the equations:

paex(ek) = pa(ek) ∀ek ∈ Ea(pa) (5)

ek ≥ ei ≥ ej ∀ej ∈ Euna(pa), ek ∈ Ea(pa) (6)

where Ea(pa) and Euna(pa) are the sets of assigned and unassigned objective
variables in the partial assignment pa. To compute new partial assignments, for
each ei ∈ Euna, find the solution paex which minimizes ei in MO-COP(ei,pa).
If such a solution exists, a new candidate assignment panew is generated which
has the same assignments for the objective variables as paex with the exception
panew(ei) = paex(ei). Therefore, panew extends paex by one objective variable
assignment which minimized the highest value among the Euna(paex).

Algorithm 1: Computing the egalitarian solution.

input: An MO-COP ⟨X ,D, Chard, Csoft⟩
1 . output: Set of assignments each corresponding to a egalitarian solution.
2 begin
3 PA = {{∅}}
4 for j ← 1 to m do
5 PA′ ←− {∅}
6 foreach pa ∈ PA do
7 foreach ei ∈ Euna(pa) do
8 paex ←− solve(MO-COP(ei,pa))
9 if paex exists then

10 panew ←− paex ∪ (pnew(ei) = paex(ei))
11 PA′ ←− PA′ ∪ panew

12 PA←− removeDominated(PA′)
13 return PA

4 Experimental Results

We empirically evaluated the performance of our techniques on medium- and
large- scale benchmarks. Given that these instances are too large for comput-
ing the representative solutions [14], we instead analyze the computational time

VII

difference between computing the set of all Pareto optimal solutions (PF) and
ω-solutions, for each ω ∈ W∗ with k = 7, where W∗ is computed “offline” as
explained in Section 2.3. Computing the PF can be seen as a preprocessing step
for the calculation of representative solutions. We used [2] to compute the PF.
In our experiments we aim to show the efficiency gain that Proposition 1 sug-
gests. We used an Intel Core i7-3612QM 2.10GHz with 8 GB of RAM using one
single core and one hour for each instance. The programs were implemented in
C++ using IBM ILOG CPLEX 12.6.3. We note that assessing the quality of
the approximation is out of the scope of this paper. This was done in [14] for
small instances, but for larger ones the algorithm in [14] could not compute the
representative solutions. This demonstrates the need for developing efficient ap-
proximation algorithms for representative solutions, as representative solutions
are of high importance but the exact algorithm cannot compute them.

To evaluate the performance of our algorithms, We used random multi-
criteria set covering instances. These correspond to MO-COPs with Di = {0, 1}.
Two sets of instances were considered. The first set (used in [2]) consists of 60
instances with |X | = {100, 150}, |Chard| = |X |/5, m = {3, 4, 5}, the scope of
C ∈ Chard is randomly selected (10 variables per C on average), and V (A)t =∑

xi∈X ci,t ∗A(xi) with ci,t chosen uniformly at random from [1, 2, ..., 1000]. The
second set are classical set covering instances scp4x, scp5x, and scp6x (used in
e.g. [3, 8, 11]) from the OR-Library [1]. These are large single-objective instances
with |X | ∈ {1000, 2000}, |Chard| = 200, and V (A) =

∑
xi∈X ci ∗ A(xi) with ci

taking uniformly-distributed values from [1, 1000]. A second objective was gen-
erated by randomly permuting the original coefficients ci. For each instance, five
new instances were created, each with a different randomized second objective,
obtaining 125 new bi-objective instances.

Aggregated results are given in Table 1, where we compare computational
times between calculating seven ω-solutions using our encoding-based (Enc) and
iterative techniques (Iter), and the PF using the BDD approach. The super-
script n indicates that n instances have not been computed within the time limit
and do not contribute towards the average time computation. From the results,
we conclude that the iterative algorithm is more robust than the encoding-based
approach and performs faster for more than two objectives. We believe this is the
case since even though the former performs more NP-hard solver calls, the prob-
lems that need to be solved in each iteration are easier to compute as Equations
5-6 offer better lower bounds than Equations 1-4 for the ILP solver.

Overall, the results demonstrate that calculating ω-solutions, as an approx-
imation of representative solutions, is significantly faster than computing the
complete set of Pareto optimal solutions. Moreover, for the larger instances the
PF could not be computed within the time limit, but our approach was able to
provide solutions within minutes, offering an alternative to [14]. This shows the
applicability and scalability of our approach, providing a reasonable trade-off
between representativity and computational efficiency.

VIII

|X | m # Iter Enc BDD [2]

100 3 10 0.9 0.81 6

100 4 10 1.8 3.6 10

100 5 10 3 31 12

150 3 10 1.2 1.1 132

150 4 10 2.5 14.2 2702

150 5 10 5.4 965 3765

1000 (scp4x) 2 50 26 17 −10

2000 (scp5x) 2 50 39.5 43 −10

1000 (scp6x) 2 25 113 89 −10

Table 1. Comparison of mean computational times (in seconds) for both sets of ins-
tances. Superscripts indicate the number of unsolved instances.

5 Conclusion

We studied the problem of computing weighted egalitarian solutions (ω-solutions)
for multi-objective constraint optimization problem. We introduced two new
techniques for computing ω-solutions and proved that the problem of computing
ω-solutions to approximate the set of representative solutions is no longer ΣP

2 -
hard. Given the complexity shift, one can expect a substantial efficiency gain
and this was indeed the case in our experiments. Out of our two approaches,
the iterative algorithm which incrementally builds the solution has proven to be
more efficient in terms of computational time and scalability. To the best of our
knowledge, it is the first time algorithms for computing weighted egalitarian so-
lutions have been sufficiently developed to efficiently tackle large-size MO-COP
instances, offering a direct improvement to the approximation of the represen-
tative solutions [14]. The approximation can be viewed as a trade-off between
representativity and computational efficiency. Furthermore, for the larger instan-
ces where computing all Pareto optimal solutions is not feasible, our approach
was able to quickly generate an approximation of the representative solutions.

We believe investigating advanced strategies for weight selection is a good
direction for future work, as the weights directly influence the quality of the
approximation. In addition, developing algorithms for computing the set of re-
presentative solutions would be beneficial, since it would allow the quality esti-
mation of the approximation. Lastly, we plan on exploring the possibility of ex-
tending other multi-objective techniques to integrate the concept of ω-solutions
natively (e.g. in [2] and [9]).

References

1. J. E. Beasley. OR-Library: distributing test problems by electronic mail. Journal
of the operational research society, pages 1069–1072, 1990.

IX

2. D. Bergman and A. A. Ciré. Multiobjective optimization by decision diagrams. In
CP’16, pages 86–95.

3. C. Gao, X. Yao, T. Weise, and J. Li. An efficient local search heuristic with row
weighting for the unicost set covering problem. European Journal of Operational
Research, 246(3):750–761, 2015.

4. J. Halpern and O. Maimon. Algorithms for the m-center problems: A survey.
European Journal of Operational Research, 10(1):90–99, 1982.

5. E. Hebrard, B. Hnich, B. O’Sullivan, and T. Walsh. Finding diverse and similar
solutions in constraint programming. In AAAI’05, pages 372–377.

6. T. Ilhan and M. C. Pinar. An efficient exact algorithm for the vertex p-center
problem. Technical report, Bilkent University Technical Report, Department of
Industrial Engineering 06533 Ankara Turkey, 2001.

7. S. S. Iyengar and M. R. Lepper. When choice is demotivating: Can one desire too
much of a good thing? Journal of personality and social psychology, 79(6):995–
1006, 2000.

8. S. Kadioglu and M. Sellmann. Dialectic search. In CP’09, pages 486–500.
9. G. Kirlik and S. Sayin. A new algorithm for generating all nondominated solutions

of multiobjective discrete optimization problems. European Journal of Operational
Research, 232(3):479–488, 2014.

10. E. Minieka. The m-center problem. SIAM Review, 12:138–139, 1970.
11. N. Musliu. Local search algorithm for unicost set covering problem. In Advances

in Applied Artificial Intelligence, IEA/AIE’06, pages 302–311.
12. C. M. Papadimitriou. Computational complexity. Addison-Wesley, Reading, Mas-

sachusetts, 1994.
13. T. Petit and A. C. Trapp. Finding diverse solutions of high quality to constraint

optimization problems. In IJCAI’15, pages 260–267.
14. N. Schwind, T. Okimoto, M. Clement, and K. Inoue. Representative solutions for

multi-objective constraint optimization problems. In KR’16, pages 601–604.
15. N. Schwind, T. Okimoto, S. Konieczny, M. Wack, and K. Inoue. Utilitarian and

egalitarian solutions for multi-objective constraint optimization. In ICTAI’14,
pages 170–177.

16. V. Torra. The weighted OWA operator. International Journal of Intelligent Sys-
tems, 12(2):153–166, 1997.

17. M. Zanker, S. Gordea, M. Jessenitschnig, and M. Schnabl. A hybrid similarity
concept for browsing semi-structured product items. In EC-Web’06, pages 21–30.

A Simple Complete Search for Logic
Programming

Jason Hemann1 (student), Daniel P. Friedman1 (advisor), William E. Byrd2,
Matthew Might2 (coauthors)

Indiana University, Bloomington IN 47402, USA
University of Utah, Salt Lake CIty UT 84112, USA

Abstract. We present a straightforward, call-by-value embedding of a
simple complete search for a small logic programming language. The en-
tire language is 54 lines of Racket—half of which implement unification.
Evidence suggests our combination of expressiveness, concision, and ele-
gance is compelling: since microKanren’s release, it has spawned over 50
embeddings in over two dozen host languages.

Keywords: miniKanren, microKanren, logic programming, relational
programming, streams, search, Racket

1 Introduction

Logic programming is a highly declarative approach to problem solving that has
proven itself applicable to a wide variety of tasks [9]. Consider the below stylized
Prolog definition of the append relation:

append(L,S,O) :- [] = L, S = O

; [A|D] = L, [A|R] = O, append(D,S,R).

We can use this one definition to solve a variety of problems.

(1) ?- append([t,u,v],[w,x],Q).

Q = [t,u,v,w,x] ?

(2) ?- Q = [L,S], append(L,S,[t,u,v,w,x]).

L = [], Q = [[],[t,u,v,w,x]], S = [t,u,v,w,x] ?

. . .
L = [t,u,v,w,x], Q = [[t,u,v,w,x],[]], S = [] ?

In (1), we ask “What are the possible results of appending [t u v] to
[w x]?” In (2), we ask for a Q composed of terms L and S such that concatenat-
ing L and S yields [t u v w x]; we can find all such possibilities. Our definition
of append also has many more uses. Prolog is the traditional choice but we can
easily transliterate this definition to miniKanren [4], a logic programming DSL
shallowly embedded in many hosts, including Scheme and Racket [3].

2 Hemann et al.

It is difficult for the uninitiated to understand how logic programming works,
or to ferret out the essential details from a language’s implementation. An abun-
dance of powerful, useful features combined with years—or even decades—worth
of optimizations and improvements can obscure the more fundamental aspects of
an implementation’s inner workings. Even the small language implementations
are rarely designed to be easily understood.

Previous miniKanren implementations, for instance, enmesh the macros that
provide miniKanren’s syntax with the execution of the logic program itself. This
demands the reader have a detailed understanding of macros, and such tight
coupling makes it difficult for aspiring implementers in languages without macro
support. microKanren separates these concerns and allow functional program-
mers in a call-by-value language to implement the core logic programming fea-
tures without the syntactic sugar.

We present here the improved interleaving search of microKanren. miniKan-
ren’s interleaving depth-first search is based on Kiselyov et al.’s LogicT trans-
former [8]. These operators provide a complete search without the performance
penalties associated with, for example, breadth-first search. miniKanren inter-
leaves between successfully finding answers, with additional interleaving added
to avoid starvation and to avoid problems associated with the eagerness of its
host language. We combine the hand-off of control with relation definition, and
in doing so decrease the amount of interleaving while maintaining a complete
search. We achieve a minimal placement of interleaving points for arbitrary re-
lation definitions.

2 microKanren

We now implement microKanren’s search operators: disj, conj, define-relation,
and call/initial-state. For space, we omit definitions of == (a syntactic
equality constraint) and call/fresh (which scopes new logic variables).

The binary operators disj and conj act as goal combinators, and they allow
us to write composite goals representing the disjunction or conjunction of their
arguments.

#| Goal × Goal → Goal |#

(define ((disj g1 g2) s/c) ($append (g1 s/c) (g2 s/c)))

#| Goal × Goal → Goal |#

(define ((conj g1 g2) s/c) ($append-map g2 (g1 s/c)))

We define disj and conj in terms of two other functions, $append and
$append-map that operate on finite lists. With these operators, our streams will
always be empty or answer-bearing; in fact, they will be fully computed. The
result of a goal constructed from == must be a finite list, of length 0 or 1. If
both of disj’s arguments are goals that produce finite lists, then the result of
invoking $append on those lists is itself a finite list. If both of conj’s arguments
are goals that produce finite lists, then the result of invoking $append-map with

A Small Embedding of LP 3

a goal and a finite list must itself be a finite list. If call/fresh’s argument f

is a function whose body is a goal, and that goal produces a finite list, then
(call/fresh f) evaluates to such a goal.

Invoking a goal constructed from these operators in the initial state returns a
list of all successful computations, computed in a depth-first, preorder traversal
of the search tree generated by the program.

3 Recursion and define-relation

It’s important that we enrich our implementation to allow recursive relations.
Much of the power of logic programming comes from writing relations (e.g.
append) that refer to themselves or one another in their definitions. At present
there are several obstacles. Suppose we’d used define to build a function that
we hope would behave like a relation:

(define (peano n)

(disj (== n ’z)

(call/fresh (λ (r) (conj (== n ‘(s ,r))

(peano r))))))

This function purports to be a relation that holds for a particular encoding of
Peano numbers. What happens when we use the peano relation in the program
below? We’re hoping to generate some Peano numbers.

> ((call/fresh (λ (n) (peano n)))

’(() . 0))

We invoke (call/fresh ...) with an initial state. Invoking that goal creates
and lexically binds a new fresh variable over the body. The body, (peano n),
evaluates to a goal that we pass the state (() . 1). This goal is the disjunction
of two subgoals. To evaluate the disj, we evaluate its two subgoals, and then
call $append on the result. The first evaluates to (((0 . z)) . 1), a list of one
state.

Invoking the second of the disj’s subgoals however is troublesome. We again
lexically scope a new variable, and invoke the goal in body with a new state,
this time (() . 2). The conj goal has two subgoals. To evaluate these, we run
the first in the current state, which results in a stream. We then run the second
of conj’s goals over each element of the resulting stream and return the result.
Running this second goal begins the whole process over again. In a call-by-value
host, this execution won’t terminate. Simply using define in this manner will
not suffice.

We instead introduce the define-relation operator. This allows us to write
recursive relations; with a sequence of uses of define-relation, we can create
mutually recursive relations. Unlike the other operators, define-relation is a
macro.

4 Hemann et al.

(define-syntax-rule (define-relation (defname . args) g)

(define ((defname . args) s/c) (delay/name (g s/c))))

Racket’s define-syntax-rule gives a simple way to construct non-recursive
macros. The first argument is a pattern that specifies how to invoke the macro.
The macro’s first symbol, define-relation, is the name of the macro we’re
defining. Its second argument is a template to be filled in with the appropriate
pieces from the pattern. We do implement define-relation in terms of Racket’s
define.

This macro expands a name, arguments, and a goal expression to a define

expression with the same name and number of arguments and whose body is
a goal. It takes a state and returns a stream, but unlike the others we’ve seen
before, this goal returns an immature stream. When given a state s/c, this goal
returns a promise that evaluates the original goal g in the state s/c when forced,
returning a stream. A promise that returns a stream is itself an immature stream.

define-relation does two useful things for us: it adds the relation name
to the current namespace, and it ensures that the function implementing our
relation is total. It turns out that we will never re-evaluate an immature stream.
Unlike delay, delay/name doesn’t memoize the result of forcing the promise, so
it is like a “by name” variant of delay.

We implement define-relation as a macro of necessity. It is critical that
the expression g not be evaluated prematurely: the objective is to delay the in-
vocation of g in s/c. In a call-by-value language, a function would (prematurely)
evaluate its argument and would not delay the computation.

Below, we revisit the peano example, but this time using define-relation.
Non-termination of relation invocations is no longer an issue. Instead, the goal
(peano n), when invoked, immediately returns an immature stream.

(define-relation (peano n)

(disj (== n ’z)

(call/fresh (λ (r) (conj (== n ‘(s ,r))

(peano r))))))

We can also write recursive relations whose goals quite clearly will never produce
answers.

(define-relation (unproductive n)

(unproductive n))

We can now introduce $append and $append-map. Their definitions are in
fact those of append and append-map, functions over lists that are standard to
many languages [11], but augmented with support for immature streams.

(define ($append $1 $2)

(cond

((null? $1) $2)

((promise? $1) (delay/name ($append (force $1) $2)))

(else (cons (car $1) ($append (cdr $1) $2)))))

A Small Embedding of LP 5

If the recursive argument to $append is an immature stream, we return an
immature stream, which, when forced, continues appending the second to the
first. Likewise, in $append-map, when $ is an immature stream, we return an
immature stream that will continue the computation but still forcing the im-
mature stream. Rather than delay/name, force, and promise?, we could have
used (λ () ...), procedure invocation, and procedure?. Using λ to construct
a procedure delays evaluation, and procedure? would be our test for an imma-
ture stream. We choose Racket’s special-purpose primitives for added clarity, but
implementers targeting other languages can use anonymous procedures if these
primitives aren’t available. In languages without macros, the programmer could
explicitly add a delay at the top of each relation; this has though the unfortunate
consequence of exposing the implementation of streams.

#| Goal × Stream → Stream |#

(define ($append-map g $)

(cond

((null? $) ’())

((promise? $) (delay/name ($append-map g (force $))))

(else ($append (g (car $)) ($append-map g (cdr $))))))

After these changes, it’s possible to execute a program and produce neither
the empty stream nor an answer-bearing one. We might produce instead an
immature stream.

> ((call/fresh (λ (n) (peano n)))

’(() . 0))

#<promise>

To resolve this we need to do something special when we invoke a goal in the
initial state.

4 call/initial-state

At the very least, we would like to know if our programs are satisfiable or not.
That is, we would hope to get at least one answer if one exists, and the empty list
if there are none. The call/initial-state operator ensures that if we return,
we return with a list of answers.

#| Maybe Nat+ × Goal→ Mature |#

(define (call/initial-state n g) (take n (pull (g ’(() . 0)))))

call/initial-state takes an argument n which represents the number of an-
swers to retrieve. n may just be a positive natural number, in which case we
return at most that many answers. Otherwise, we provide #f, indicating mi-
croKanren should return all answers. It also takes a goal as an argument. The
function pull takes a stream as argument, and if pull terminates, it returns
a mature stream. As streams may be unproductive, it is not always possible

6 Hemann et al.

to produce a mature stream. As a result, pull, and consequently take and
call/initial-state, are partial functions. These are the only partial functions
in the microKanren implementation.

#| Stream → Mature |#

(define (pull $) (if (promise? $) (pull (force $)) $))

take receives the mature stream that is the result of pull and, n, the argument
dictating whether to return all, or just the first n elements of the stream.

#| Maybe Nat+ × Mature → List |#

(define (take n $)

(cond

((null? $) ’())

((and n (zero? (- n 1))) (list (car $)))

(else (cons (car $) (take (and n (- n 1)) (pull (cdr $)))))))

Our microKanren is now capable of creating, combining, and searching for an-
swers in infinite streams.

> (call/initial-state 2

(call/fresh (λ (n) (peano n))))

’((((0 . z)) . 1) (((1 . z) (0 . (s 1))) . 2))

Thus, we have brought microKanren programs into the delay monad [2,5]:
rather than always returning a list implementation of non-deterministic choice,
we either have no values, a value now (possibly more than one), or something
we can search later for a value. pull, since it forces an actual value out of a
promise, is akin to run in the delay monad. take bears a similar relationship to
run in the list monad.

5 Interleaving, Completeness, and Search

Although microKanren is now capable of creating and managing infinite streams,
it doesn’t manage them as well as we’d like. Consider what happens in the
following program execution:

> (call/initial-state 1

(call/fresh (λ (n) (disj (unproductive n)

(peano n)))))

We would like the program to return a stream containing the ns for which
unproductive holds and in addition the ns for which peano holds. We know
from Section 3 that there are no ns for which unproductive holds, but infinitely
many for peano. The stream should contain only ns for which peano holds. It’s
perhaps surprising, then, to learn that this program loops infinitely.

Streams that result from using unproductive will always be, as the name
suggests, unproductive. When executing the program above, such an unproduc-
tive stream will be the recursive argument $1 to $append. Unproductive streams

A Small Embedding of LP 7

are necessarily immature. According to our definition of $append, we always re-
turn the immature stream. When we force this immature stream, it calls $append
on the forced stream value of (the delayed) $1 and $2. Since unproductive is
unproductive, this process continues without ever returning any of the results
from peano.

Such surprising results are not solely the consequence of goals with unpro-
ductive streams. Consider the definition of church.

(define-relation (church n)

(call/fresh (λ (b) (conj (== n ‘(λ (s) (λ (z) ,b)))

(peano b)))))

The relation church holds for Church numerals. Using a newly created variable
b, it constructs a list resembling a lambda-calculus expression whose body is
the variable b. It uses peano to generate the body of the numeral. We can thus
use it to generate Church numerals in a manner analogous to our use of peano.
But consider the program below, wherein the resulting stream is productive, but
only contains elements for which peano holds.

> (call/initial-state 3

(call/fresh (λ (n) (disj (peano n)

(church n)))))

’((((0 . z)) . 1) (((1 . z) (0 . (s 1))) . 2)

(((2 . z) (1 . (s 2)) (0 . (s 1))) . 3))

Under the default Racket printing convention, “.” is suppressed when it pre-
cedes a “(”. We retain the “.” for legibility—the Racket parameter current-print
controls this behavior.

Our implementation of $append in Section 3 induces a depth-first search.
Depth-first search is the traditional search strategy of Prolog and can be imple-
mented quite efficiently. As we’ve seen though, depth-first search is an incomplete
search strategy: answers can be buried infinitely deep in a stream. The stream
that results from a disj goal produces elements of the stream from the second
goal only after exhausting the elements of the stream from the first.

#| Stream × Stream → Stream |#

(define ($append $1 $2)

(cond

. . .
((promise? $1) (delay/name ($append (force $1) $2)))))

As a result, even if answers exist microKanren may fail to produce them. We
will remedy this weakness in $append, and provide microKanren with a simple
complete search. We want microKanren to guarantee each and every answer
should occur at a finite position in the stream. Fortunately, this doesn’t require
a significant change.

8 Hemann et al.

#| Stream × Stream → Stream |#

(define ($append $1 $2)

(cond

. . .
((promise? $1) (delay/name ($append $2 (force $1))))))

That’s it. This one change to the promise? line of $append is sufficient to make
disj fair and to transform our search from an incomplete, depth-first search to
a complete one.

Interestingly, we haven’t reconstructed some particular, fixed, complete search
strategy. Instead, the search strategy of microKanren programs is program- and
query-specific. The particular definitions of a program’s relations, together with
the goal from which it’s executed, dictates the order we explore the search tree.
By contrast, Spivey and Seres implement breadth-first search, also a complete
search, in a language similar to microKanren [12].

Relying on non-strict evaluation simplifies their implementation; manually
managing delays would make the call-by-value version less elegant than their
implementation. Even excepting that, their implementation requires a somewhat
more sophisticated transformation than does ours. Kiselyov et al. describe a
different mechanism to achieve a complete search, but they too rely on non-
strict evaluation [8]. We achieve a simpler implementation of a complete search
by using the delays as markers for interleaving our streams.

6 Conclusion and Related Work

There has been an extensive research on logic programming implementation [1].
Spivey and Seres’s [12] present a Haskell embedding of a language quite simi-
lar to microKanren. They begin with depth-first search language, and through
transformations derive an implementation of breadth-first search.

Hinze [6,7] and Kiselyov et al. [8] implement backtracking with asymptotic
performance improvements over stream-based approaches like that used in mi-
croKanren and the works cited above. These context-passing implementations
are also more complicated to understand and to implement. We chose to use
streams in part to more easily communicate ideas.

The fair search operators in Kiselyov et al.’s LogicT monad provide the basis
of the interleaving search in earlier miniKanren implementations. The LogicT
transformer augments an arbitrary monad with backtracking and control opera-
tors similar to those we use. Because we have access to the whole logic program
in our embedding and take special care to control interleaving in recursions, we
can use less frequent interleaving and maintain a complete search.

Our development led us to a number of interesting, still-open problems.
Hinze [6] shows our list-based implementation of nondeterminism is asymptot-
ically slower than a continuation-based “context-passing” implementation. We
would like to combine our manual control of delays with a context-passing im-
plementation á la Hinze and Kiselyov et al. [8].

A Small Embedding of LP 9

While define-relation is sufficient to ensure our search is complete, it in
general causes more interleaving than necessary. For instance, mutually-recursive
relations only need one interleaving point between them, and we don’t need to
interleave at all deterministic relations. We could statically “push down” the
delays into the body of a relation, reducing the amount of interleaving we perform
while retaining a complete search.

We would also like to mechanically prove the correctness of microKanren’s
search with a dependently-typed implementation whose types encode correctness
of substitutions and unification. Earlier work by Kumar [10] in mechanizing
facets of a miniKanren implementation might provide a starting point.

References

1. Balbin, I., Lecot, K.: Logic Programming: A Classified Bibliography. Springer Sci-
ence & Business Media (2012)

2. Capretta, V.: General recursion via coinductive types. Logical Methods in Com-
puter Science 1(2) (2005)

3. Flatt, M., PLT: Reference: Racket. Tech. Rep. PLT-TR-2010-1, PLT Design Inc.
(2010), http://racket-lang.org/tr1/

4. Friedman, D.P., Byrd, W.E., Kiselyov, O.: The Reasoned Schemer. MIT Press,
Cambridge, MA (2005)

5. Ganz, S.E., Friedman, D.P., Wand, M.: Trampolined Style. In: Proc. 4th ICFP.
pp. 18–27. ACM (1999)

6. Hinze, R.: Deriving backtracking monad transformers. In: ACM SIGPLAN Notices.
vol. 35, pp. 186–197. ACM (2000)

7. Hinze, R.: Prolog’s control constructs in a functional setting: Axioms and im-
plementation. International Journal of Foundations of Computer Science 12(02),
125–170 (2001)

8. Kiselyov, O., Shan, C., Friedman, D.P., Sabry, A.: Backtracking, interleaving, and
terminating monad transformers: (functional pearl). In: Danvy, O., Pierce, B.C.
(eds.) Proceedings of the 10th ACM SIGPLAN ICFP. pp. 192–203. ACM (Septem-
ber 2005)

9. Kowalski, R.A.: Logic for Problem Solving. North-Holland/Elsevier (1979)
10. Kumar, R.: Mechanising Aspects of miniKanren in HOL (2010), australian Na-

tional University. Bachelors thesis
11. Shivers, O.: List Library. Scheme Request for Implementation. SRFI-1 (1999), http:

//srfi.schemers.org/srfi-1/srfi-1.html
12. Spivey, J., Seres, S.: Embedding Prolog in Haskell. In: Meier, E. (ed.) Haskell 99

(1999)

MDDs: Sampling and Probability Constraints

Guillaume Perez1 and Jean-Charles Régin2

Université Nice-Sophia Antipolis, I3S UMR 6070, CNRS, France
1 PhD student, 2 Advisor

guillaume.perez06@gmail.com, jcregin@gmail.com

Abstract. We propose to combine two successful techniques of Artificial Intel-
ligence: sampling and Multi-valued Decision Diagrams (MDDs). Sampling, and
notably Markov sampling, is often used to generate data resembling to a corpus.
However, this generation has usually to respect some additional constraints, for
instance to avoid plagiarism or to respect some rules of the application domain.
We propose to represent the corpus dependencies and these side constraints by
an MDD and to develop some algorithms for sampling the solutions of an MDD
while respecting some probabilities or a Markov chain. In that way we obtain a
generic method which avoids the development of ad-hoc algorithm for each ap-
plication as it is currently the case. In addition, we introduce new constraints for
controlling the probabilities of the solutions that are sampled. We experiments
our method on a real life application: the geomodeling of a petroleum reservoir,
and on the generation of French alexandrines. The obtained results show the ad-
vantage and the efficiency of our approach.

NightSplitter: a scheduling tool to optimize
(sub)group activities

Tong Liu1, Roberto Di Cosmo2, Maurizio Gabbrielli1 and Jacopo Mauro3

1 DISI, University of Bologna, Bologna, Italy
2 INRIA and University Paris Diderot, Paris, France

3 Department of Informatics, University of Oslo, Oslo, Norway
{t.liu, maurizio.gabbrielli}@unibo.it, roberto@dicosmo.org,

jacopom@ifi.uio.no

Abstract. Humans are social animals and usually organize activities
in groups. However, they are often willing to split temporarily a big-
ger group in subgroups to enhance their preferences. In this work we
present NightSplitter, an on-line tool that is able to plan movie and din-
ner activities for a group of users, possibly splitting them in subgroups
to optimally satisfy their preferences. We first model and prove that this
problem is NP-complete. We then use Constraint Programming (CP)
or alternatively Simulated Annealing (SA) to solve it. Empirical results
show the feasibility of the approach even for big cities where hundreds of
users can select among hundreds of movies and thousand of restaurants.
4

4 In this work, Tong Liu is a PhD student, other authors are advisors.

Dependency Learning for QBF

Tomáš Peitl, Friedrich Slivovsky, and Stefan Szeider

Algorithms and Complexity Group, TU Wien, Austria

Abstract. Quantified Boolean Formulas (QBFs) can be used to succinctly encode
problems from domains such as formal verification, planning, and synthesis. One
of the main approaches to QBF solving is Quantified Conflict Driven Clause
Learning (QCDCL). By default, QCDCL assigns variables in the order of their
appearance in the quantifier prefix so as to account for dependencies among
variables. Dependency schemes can be used to relax this restriction and exploit
independence among variables in certain cases, but only at the cost of nontrivial
interferences with the proof system underlying QCDCL. We propose a new tech-
nique for exploiting variable independence within QCDCL that allows solvers to
learn variable dependencies on the fly. The resulting version of QCDCL enjoys
improved propagation and increased flexibility in choosing variables for branch-
ing while retaining ordinary (long-distance) Q-resolution as its underlying proof
system. In experiments on standard benchmark sets, an implementation of this
algorithm shows performance comparable to state-of-the-art QBF solvers.

Under consideration for publication in Theory and Practice of Logic Programming 1

Productive Corecursion in Logic Programming∗
EKATERINA KOMENDANTSKAYA
Heriot-Watt University, Edinburgh, Scotland, UK

(e-mail: ek19@hw.ac.uk)

YUE LI
Heriot-Watt University, Edinburgh, Scotland, UK

(e-mail: yl55@hw.ac.uk)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Logic Programming is a Turing complete language. As a consequence, designing algorithms that decide
termination and non-termination of programs or decide inductive/coinductive soundness of formulae is a
challenging task. For example, the existing state-of-the-art algorithms can only semi-decide coinductive
soundness of queries in logic programming for regular formulae. Another, less famous, but equally fun-
damental and important undecidable property is productivity. If a derivation is infinite and coinductively
sound, we may ask whether the computed answer it determines actually computes an infinite formula. If it
does, the infinite computation is productive. This intuition was first expressed under the name of compu-
tations at infinity in the 80s. In modern days of the Internet and stream processing, its importance lies in
connection to infinite data structure processing.

Recently, an algorithm was presented that semi-decides a weaker property – of productivity of logic pro-
grams. A logic program is productive if it can give rise to productive derivations. In this paper we strengthen
these recent results. We propose a method that semi-decides productivity of individual derivations for reg-
ular formulae. Thus we at last give an algorithmic counterpart to the notion of productivity of derivations
in logic programming. This is the first algorithmic solution to the problem since it was raised more than 30
years ago. We also present an implementation of this algorithm.

KEYWORDS: Horn Clauses, (Co)Recursion, (Co)Induction, Infinite Term Trees, Productivity.

∗ This work has been partially supported by EPSRC grant EP/K031864/1-2

